Cargando…
Reinforcement Learning Based Fast Self-Recalibrating Decoder for Intracortical Brain–Machine Interface
Background: For the nonstationarity of neural recordings in intracortical brain–machine interfaces, daily retraining in a supervised manner is always required to maintain the performance of the decoder. This problem can be improved by using a reinforcement learning (RL) based self-recalibrating deco...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7582276/ https://www.ncbi.nlm.nih.gov/pubmed/32992539 http://dx.doi.org/10.3390/s20195528 |