Cargando…
Reinforcement Learning Based Fast Self-Recalibrating Decoder for Intracortical Brain–Machine Interface
Background: For the nonstationarity of neural recordings in intracortical brain–machine interfaces, daily retraining in a supervised manner is always required to maintain the performance of the decoder. This problem can be improved by using a reinforcement learning (RL) based self-recalibrating deco...
Autores principales: | Zhang, Peng, Chao, Lianying, Chen, Yuting, Ma, Xuan, Wang, Weihua, He, Jiping, Huang, Jian, Li, Qiang |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7582276/ https://www.ncbi.nlm.nih.gov/pubmed/32992539 http://dx.doi.org/10.3390/s20195528 |
Ejemplares similares
-
Neural Decoding for Intracortical Brain–Computer Interfaces
por: Dong, Yuanrui, et al.
Publicado: (2023) -
A simulation study on the effects of neuronal ensemble properties on decoding algorithms for intracortical brain–machine interfaces
por: Kim, Min-Ki, et al.
Publicado: (2018) -
Intracortical Brain-Machine Interfaces Advance Sensorimotor Neuroscience
por: Schroeder, Karen E., et al.
Publicado: (2016) -
A Brain-Machine Interface Instructed by Direct Intracortical Microstimulation
por: O'Doherty, Joseph E., et al.
Publicado: (2009) -
The influence of non-stationarity of spike signals on decoding performance in intracortical brain-computer interface: a simulation study
por: Wan, Zijun, et al.
Publicado: (2023)