Cargando…

In Vivo Studies of Inoculated Plants and In Vitro Studies Utilizing Methanolic Extracts of Endophytic Streptomyces sp. Strain DBT34 Obtained from Mirabilis jalapa L. Exhibit ROS-Scavenging and Other Bioactive Properties

Reactive oxygen species (ROS) and other free radicals cause oxidative damage in cells under biotic and abiotic stress. Endophytic microorganisms reside in the internal tissues of plants and contribute to the mitigation of such stresses by the production of antioxidant enzymes and compounds. We hypot...

Descripción completa

Detalles Bibliográficos
Autores principales: Passari, Ajit Kumar, Leo, Vincent Vineeth, Singh, Garima, Samanta, Loknath, Ram, Heera, Siddaiah, Chandra Nayak, Hashem, Abeer, Al-Arjani, Al-Bandari Fahad, Alqarawi, Abdulaziz A., Fathi Abd_Allah, Elsayed, Singh, Bhim Pratap
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7582327/
https://www.ncbi.nlm.nih.gov/pubmed/33036127
http://dx.doi.org/10.3390/ijms21197364
Descripción
Sumario:Reactive oxygen species (ROS) and other free radicals cause oxidative damage in cells under biotic and abiotic stress. Endophytic microorganisms reside in the internal tissues of plants and contribute to the mitigation of such stresses by the production of antioxidant enzymes and compounds. We hypothesized that the endophytic actinobacterium Streptomyces sp. strain DBT34, which was previously demonstrated to have plant growth-promoting (PGP) and antimicrobial properties, may also have a role in protecting plants against several stresses through the production of antioxidants. The present study was designed to characterize catalase and superoxide dismutase (SOD), two enzymes involved in the detoxification of ROS, in methanolic extracts derived from six endophytic actinobacterial isolates obtained from the traditional medicinal plant Mirabilis jalapa. The results of a preliminary screen indicated that Streptomyces sp. strain DBT34 was the best overall strain and was therefore used in subsequent detailed analyses. A methanolic extract of DBT34 exhibited significant antioxidant potential in 1,1-diphenyl-2-picrylhydrazyl (DPPH) and 2,2′-azino-bis-3-ethylbenzthiazoline-6-sulphonic acid (ABTS) assays. The cytotoxicity of DBT34 against liver hepatocellular cells (HepG2) was also determined. Results indicated that methanolic extract of Streptomyces sp. strain DBT34 exhibited significant catalase and SOD-like activity with 158.21 U resulting in a 55.15% reduction in ROS. The IC(50) values of a crude methanolic extract of strain DBT34 on DPPH radical scavenging and ABTS radical cation decolorization were 41.5 µg/mL and 47.8 µg/mL, respectively. Volatile compounds (VOC) were also detected in the methanolic extract of Streptomyces sp. strain DBT34 using GC-MS analysis to correlate their presence with bioactive potential. Treatments of rats with DBT34 extract and sitagliptin resulted in a significant (p ≤ 0.001) reduction in total cholesterol, LDL-cholesterol, and VLDL-cholesterol, relative to the vehicle control and a standard diabetic medicine. The pancreatic histoarchitecture of vehicle control rats exhibited a compact volume of isolated clusters of Langerhans cells surrounded by acinies with proper vaculation. An in-vivo study of Streptomyces sp. strain DBT34 on chickpea seedlings revealed an enhancement in its antioxidant potential as denoted by lower IC(50) values for DPPH and ABTS radical scavenging activity under greenhouse conditions in relative comparison to control plants. Results of the study indicate that strain DBT34 provides a defense mechanism to its host through the production of antioxidant therapeutic agents that mitigate ROS in hosts subjected to biotic and abiotic stresses.