Cargando…
Developing Artefact Removal Algorithms to Process Data from a Microwave Imaging Device for Haemorrhagic Stroke Detection
In this paper, we present an investigation of different artefact removal methods for ultra-wideband Microwave Imaging (MWI) to evaluate and quantify current methods in a real environment through measurements using an MWI device. The MWI device measures the scattered signals in a multi-bistatic fashi...
Autores principales: | Sohani, Behnaz, Puttock, James, Khalesi, Banafsheh, Ghavami, Navid, Ghavami, Mohammad, Dudley, Sandra, Tiberi, Gianluigi |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7582349/ https://www.ncbi.nlm.nih.gov/pubmed/32998256 http://dx.doi.org/10.3390/s20195545 |
Ejemplares similares
-
Radiation-Free Microwave Technology for Breast Lesion Detection Using Supervised Machine Learning Model
por: Rana, Soumya Prakash, et al.
Publicado: (2023) -
Breast lesion detection through MammoWave device: Empirical detection capability assessment of microwave images’ parameters
por: Sani, Lorenzo, et al.
Publicado: (2021) -
Machine Learning Approaches for Automated Lesion Detection in Microwave Breast Imaging Clinical Data
por: Rana, Soumya Prakash, et al.
Publicado: (2019) -
Experimental Validation of Microwave Tomography with the DBIM-TwIST Algorithm for Brain Stroke Detection and Classification
por: Karadima, Olympia, et al.
Publicado: (2020) -
Automated breast lesion localisation in microwave imaging employing simplified pulse coupled neural network
por: Dey, Maitreyee, et al.
Publicado: (2022)