Cargando…

Deep Reinforcement Learning for Indoor Mobile Robot Path Planning

This paper proposes a novel incremental training mode to address the problem of Deep Reinforcement Learning (DRL) based path planning for a mobile robot. Firstly, we evaluate the related graphic search algorithms and Reinforcement Learning (RL) algorithms in a lightweight 2D environment. Then, we de...

Descripción completa

Detalles Bibliográficos
Autores principales: Gao, Junli, Ye, Weijie, Guo, Jing, Li, Zhongjuan
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7582363/
https://www.ncbi.nlm.nih.gov/pubmed/32992750
http://dx.doi.org/10.3390/s20195493
Descripción
Sumario:This paper proposes a novel incremental training mode to address the problem of Deep Reinforcement Learning (DRL) based path planning for a mobile robot. Firstly, we evaluate the related graphic search algorithms and Reinforcement Learning (RL) algorithms in a lightweight 2D environment. Then, we design the algorithm based on DRL, including observation states, reward function, network structure as well as parameters optimization, in a 2D environment to circumvent the time-consuming works for a 3D environment. We transfer the designed algorithm to a simple 3D environment for retraining to obtain the converged network parameters, including the weights and biases of deep neural network (DNN), etc. Using these parameters as initial values, we continue to train the model in a complex 3D environment. To improve the generalization of the model in different scenes, we propose to combine the DRL algorithm Twin Delayed Deep Deterministic policy gradients (TD3) with the traditional global path planning algorithm Probabilistic Roadmap (PRM) as a novel path planner (PRM+TD3). Experimental results show that the incremental training mode can notably improve the development efficiency. Moreover, the PRM+TD3 path planner can effectively improve the generalization of the model.