Cargando…

Excess Protein O-GlcNAcylation Links Metabolic Derangements to Right Ventricular Dysfunction in Pulmonary Arterial Hypertension

The hexosamine biosynthetic pathway (HBP) converts glucose to uridine-diphosphate-N-acetylglucosamine, which, when added to serines or threonines, modulates protein function through protein O-GlcNAcylation. Glutamine-fructose-6-phosphate amidotransferase (GFAT) regulates HBP flux, and AMP-kinase pho...

Descripción completa

Detalles Bibliográficos
Autores principales: Prisco, Sasha Z., Rose, Lauren, Potus, Francois, Tian, Lian, Wu, Danchen, Hartweck, Lynn, Al-Qazazi, Ruaa, Neuber-Hess, Monica, Eklund, Megan, Hsu, Steven, Thenappan, Thenappan, Archer, Stephen L., Prins, Kurt W.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7582480/
https://www.ncbi.nlm.nih.gov/pubmed/33019763
http://dx.doi.org/10.3390/ijms21197278
_version_ 1783599201516519424
author Prisco, Sasha Z.
Rose, Lauren
Potus, Francois
Tian, Lian
Wu, Danchen
Hartweck, Lynn
Al-Qazazi, Ruaa
Neuber-Hess, Monica
Eklund, Megan
Hsu, Steven
Thenappan, Thenappan
Archer, Stephen L.
Prins, Kurt W.
author_facet Prisco, Sasha Z.
Rose, Lauren
Potus, Francois
Tian, Lian
Wu, Danchen
Hartweck, Lynn
Al-Qazazi, Ruaa
Neuber-Hess, Monica
Eklund, Megan
Hsu, Steven
Thenappan, Thenappan
Archer, Stephen L.
Prins, Kurt W.
author_sort Prisco, Sasha Z.
collection PubMed
description The hexosamine biosynthetic pathway (HBP) converts glucose to uridine-diphosphate-N-acetylglucosamine, which, when added to serines or threonines, modulates protein function through protein O-GlcNAcylation. Glutamine-fructose-6-phosphate amidotransferase (GFAT) regulates HBP flux, and AMP-kinase phosphorylation of GFAT blunts GFAT activity and O-GlcNAcylation. While numerous studies demonstrate increased right ventricle (RV) glucose uptake in pulmonary arterial hypertension (PAH), the relationship between O-GlcNAcylation and RV function in PAH is unexplored. Therefore, we examined how colchicine-mediated AMP-kinase activation altered HBP intermediates, O-GlcNAcylation, mitochondrial function, and RV function in pulmonary artery-banded (PAB) and monocrotaline (MCT) rats. AMPK activation induced GFAT phosphorylation and reduced HBP intermediates and O-GlcNAcylation in MCT but not PAB rats. Reduced O-GlcNAcylation partially restored the RV metabolic signature and improved RV function in MCT rats. Proteomics revealed elevated expression of O-GlcNAcylated mitochondrial proteins in MCT RVs, which fractionation studies corroborated. Seahorse micropolarimetry analysis of H9c2 cardiomyocytes demonstrated colchicine improved mitochondrial function and reduced O-GlcNAcylation. Presence of diabetes in PAH, a condition of excess O-GlcNAcylation, reduced RV contractility when compared to nondiabetics. Furthermore, there was an inverse relationship between RV contractility and HgbA1C. Finally, RV biopsy specimens from PAH patients displayed increased O-GlcNAcylation. Thus, excess O-GlcNAcylation may contribute to metabolic derangements and RV dysfunction in PAH.
format Online
Article
Text
id pubmed-7582480
institution National Center for Biotechnology Information
language English
publishDate 2020
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-75824802020-10-29 Excess Protein O-GlcNAcylation Links Metabolic Derangements to Right Ventricular Dysfunction in Pulmonary Arterial Hypertension Prisco, Sasha Z. Rose, Lauren Potus, Francois Tian, Lian Wu, Danchen Hartweck, Lynn Al-Qazazi, Ruaa Neuber-Hess, Monica Eklund, Megan Hsu, Steven Thenappan, Thenappan Archer, Stephen L. Prins, Kurt W. Int J Mol Sci Article The hexosamine biosynthetic pathway (HBP) converts glucose to uridine-diphosphate-N-acetylglucosamine, which, when added to serines or threonines, modulates protein function through protein O-GlcNAcylation. Glutamine-fructose-6-phosphate amidotransferase (GFAT) regulates HBP flux, and AMP-kinase phosphorylation of GFAT blunts GFAT activity and O-GlcNAcylation. While numerous studies demonstrate increased right ventricle (RV) glucose uptake in pulmonary arterial hypertension (PAH), the relationship between O-GlcNAcylation and RV function in PAH is unexplored. Therefore, we examined how colchicine-mediated AMP-kinase activation altered HBP intermediates, O-GlcNAcylation, mitochondrial function, and RV function in pulmonary artery-banded (PAB) and monocrotaline (MCT) rats. AMPK activation induced GFAT phosphorylation and reduced HBP intermediates and O-GlcNAcylation in MCT but not PAB rats. Reduced O-GlcNAcylation partially restored the RV metabolic signature and improved RV function in MCT rats. Proteomics revealed elevated expression of O-GlcNAcylated mitochondrial proteins in MCT RVs, which fractionation studies corroborated. Seahorse micropolarimetry analysis of H9c2 cardiomyocytes demonstrated colchicine improved mitochondrial function and reduced O-GlcNAcylation. Presence of diabetes in PAH, a condition of excess O-GlcNAcylation, reduced RV contractility when compared to nondiabetics. Furthermore, there was an inverse relationship between RV contractility and HgbA1C. Finally, RV biopsy specimens from PAH patients displayed increased O-GlcNAcylation. Thus, excess O-GlcNAcylation may contribute to metabolic derangements and RV dysfunction in PAH. MDPI 2020-10-01 /pmc/articles/PMC7582480/ /pubmed/33019763 http://dx.doi.org/10.3390/ijms21197278 Text en © 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Prisco, Sasha Z.
Rose, Lauren
Potus, Francois
Tian, Lian
Wu, Danchen
Hartweck, Lynn
Al-Qazazi, Ruaa
Neuber-Hess, Monica
Eklund, Megan
Hsu, Steven
Thenappan, Thenappan
Archer, Stephen L.
Prins, Kurt W.
Excess Protein O-GlcNAcylation Links Metabolic Derangements to Right Ventricular Dysfunction in Pulmonary Arterial Hypertension
title Excess Protein O-GlcNAcylation Links Metabolic Derangements to Right Ventricular Dysfunction in Pulmonary Arterial Hypertension
title_full Excess Protein O-GlcNAcylation Links Metabolic Derangements to Right Ventricular Dysfunction in Pulmonary Arterial Hypertension
title_fullStr Excess Protein O-GlcNAcylation Links Metabolic Derangements to Right Ventricular Dysfunction in Pulmonary Arterial Hypertension
title_full_unstemmed Excess Protein O-GlcNAcylation Links Metabolic Derangements to Right Ventricular Dysfunction in Pulmonary Arterial Hypertension
title_short Excess Protein O-GlcNAcylation Links Metabolic Derangements to Right Ventricular Dysfunction in Pulmonary Arterial Hypertension
title_sort excess protein o-glcnacylation links metabolic derangements to right ventricular dysfunction in pulmonary arterial hypertension
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7582480/
https://www.ncbi.nlm.nih.gov/pubmed/33019763
http://dx.doi.org/10.3390/ijms21197278
work_keys_str_mv AT priscosashaz excessproteinoglcnacylationlinksmetabolicderangementstorightventriculardysfunctioninpulmonaryarterialhypertension
AT roselauren excessproteinoglcnacylationlinksmetabolicderangementstorightventriculardysfunctioninpulmonaryarterialhypertension
AT potusfrancois excessproteinoglcnacylationlinksmetabolicderangementstorightventriculardysfunctioninpulmonaryarterialhypertension
AT tianlian excessproteinoglcnacylationlinksmetabolicderangementstorightventriculardysfunctioninpulmonaryarterialhypertension
AT wudanchen excessproteinoglcnacylationlinksmetabolicderangementstorightventriculardysfunctioninpulmonaryarterialhypertension
AT hartwecklynn excessproteinoglcnacylationlinksmetabolicderangementstorightventriculardysfunctioninpulmonaryarterialhypertension
AT alqazaziruaa excessproteinoglcnacylationlinksmetabolicderangementstorightventriculardysfunctioninpulmonaryarterialhypertension
AT neuberhessmonica excessproteinoglcnacylationlinksmetabolicderangementstorightventriculardysfunctioninpulmonaryarterialhypertension
AT eklundmegan excessproteinoglcnacylationlinksmetabolicderangementstorightventriculardysfunctioninpulmonaryarterialhypertension
AT hsusteven excessproteinoglcnacylationlinksmetabolicderangementstorightventriculardysfunctioninpulmonaryarterialhypertension
AT thenappanthenappan excessproteinoglcnacylationlinksmetabolicderangementstorightventriculardysfunctioninpulmonaryarterialhypertension
AT archerstephenl excessproteinoglcnacylationlinksmetabolicderangementstorightventriculardysfunctioninpulmonaryarterialhypertension
AT prinskurtw excessproteinoglcnacylationlinksmetabolicderangementstorightventriculardysfunctioninpulmonaryarterialhypertension