Cargando…
A Visual Sensing Concept for Robustly Classifying House Types through a Convolutional Neural Network Architecture Involving a Multi-Channel Features Extraction
The core objective of this paper is to develop and validate a comprehensive visual sensing concept for robustly classifying house types. Previous studies regarding this type of classification show that this type of classification is not simple (i.e., tough) and most classifier models from the relate...
Autores principales: | Tavakkoli, Vahid, Mohsenzadegan, Kabeh, Kyamakya, Kyandoghere |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7582486/ https://www.ncbi.nlm.nih.gov/pubmed/33027893 http://dx.doi.org/10.3390/s20195672 |
Ejemplares similares
-
A Deep-Learning Based Visual Sensing Concept for a Robust Classification of Document Images under Real-World Hard Conditions
por: Mohsenzadegan, Kabeh, et al.
Publicado: (2021) -
A Smart Visual Sensing Concept Involving Deep Learning for a Robust Optical Character Recognition under Hard Real-World Conditions
por: Mohsenzadegan, Kabeh, et al.
Publicado: (2022) -
Contribution to Speeding-Up the Solving of Nonlinear Ordinary Differential Equations on Parallel/Multi-Core Platforms for Sensing Systems
por: Tavakkoli, Vahid, et al.
Publicado: (2020) -
A Novel Recurrent Neural Network-Based Ultra-Fast, Robust, and Scalable Solver for Inverting a “Time-Varying Matrix”
por: Tavakkoli, Vahid, et al.
Publicado: (2019) -
A Virtual Sensing Concept for Nitrogen and Phosphorus Monitoring Using Machine Learning Techniques
por: Paepae, Thulane, et al.
Publicado: (2022)