Cargando…
Equipment Anomaly Detection for Semiconductor Manufacturing by Exploiting Unsupervised Learning from Sensory Data †
In-line anomaly detection (AD) not only identifies the needs for semiconductor equipment maintenance but also indicates potential line yield problems. Prompt AD based on available equipment sensory data (ESD) facilitates proactive yield and operations management. However, ESD items are highly divers...
Autores principales: | Chen, Chieh-Yu, Chang, Shi-Chung, Liao, Da-Yin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7582566/ https://www.ncbi.nlm.nih.gov/pubmed/33023191 http://dx.doi.org/10.3390/s20195650 |
Ejemplares similares
-
Anomaly Detection Using Signal Segmentation and One-Class Classification in Diffusion Process of Semiconductor Manufacturing
por: Chang, Kyuchang, et al.
Publicado: (2021) -
Application of 1D ResNet for Multivariate Fault Detection on Semiconductor Manufacturing Equipment †
por: Tchatchoua, Philip, et al.
Publicado: (2023) -
Unsupervised Deep Anomaly Detection in Chest Radiographs
por: Nakao, Takahiro, et al.
Publicado: (2021) -
Unsupervised Anomaly Detection Applied to Φ-OTDR
por: Almudévar, Antonio, et al.
Publicado: (2022) -
Search for new physics using unsupervised machine learning for anomaly detection with ATLAS
por: Zhang, Rui
Publicado: (2023)