Cargando…

Molecular Recalcitrance of Hair Passing the Digestive System of a Canid

Hair is an important component in scat that is commonly used for prey analyses in carnivores. Chemically, hair predominately consists of keratin. The recalcitrant fiber protein is degraded in nature only by a few insects and soil microorganisms. Common proteases such as pepsin do not decompose kerat...

Descripción completa

Detalles Bibliográficos
Autores principales: Tintner, Johannes, Hatlauf, Jennifer, Weber, Heidi, Lanszki, József
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7582638/
https://www.ncbi.nlm.nih.gov/pubmed/32992751
http://dx.doi.org/10.3390/molecules25194404
Descripción
Sumario:Hair is an important component in scat that is commonly used for prey analyses in carnivores. Chemically, hair predominately consists of keratin. The recalcitrant fiber protein is degraded in nature only by a few insects and soil microorganisms. Common proteases such as pepsin do not decompose keratin. Infrared spectroscopy was used to detect chemical differences caused by pretreatment and fate of hairs. Three sample sets were compared: original untreated hair, original milled hair, and hairs extracted from scats of golden jackals (Canis aureus L.). The results revealed that only milling affected the infrared spectral pattern, whereas digestion had no impact. Moreover, hairs from different species (e.g., boar) could be distinguished due to their spectral characteristics. They did not change through the passage of the digestive system.