Cargando…
DFT Investigation of Hydrogen Atom Abstraction from NHC-Boranes by Methyl, Ethyl and Cyanomethyl Radicals—Composition and Correlation Analysis of Kinetic Barriers
Understanding the hydrogen atom abstraction (HAA) reactions of N-heterocyclic carbene (NHC)-boranes is essential for extending the practical applications of boron chemistry. In this study, density functional theory (DFT) computations were performed for the HAA reactions of a series of NHC-boranes at...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7582687/ https://www.ncbi.nlm.nih.gov/pubmed/33019654 http://dx.doi.org/10.3390/molecules25194509 |
_version_ | 1783599249063149568 |
---|---|
author | Qu, Hong-jie Yuan, Lang Jia, Cai-xin Yu, Hai-tao Xu, Hui |
author_facet | Qu, Hong-jie Yuan, Lang Jia, Cai-xin Yu, Hai-tao Xu, Hui |
author_sort | Qu, Hong-jie |
collection | PubMed |
description | Understanding the hydrogen atom abstraction (HAA) reactions of N-heterocyclic carbene (NHC)-boranes is essential for extending the practical applications of boron chemistry. In this study, density functional theory (DFT) computations were performed for the HAA reactions of a series of NHC-boranes attacked by (•)CH(2)CN, Me(•) and Et(•) radicals. Using the computed data, we investigated the correlations of the activation and free energy barriers with their components, including the intrinsic barrier, the thermal contribution of the thermodynamic reaction energy to the kinetic barriers, the activation Gibbs free energy correction and the activation zero-point vibrational energy correction. Furthermore, to describe the dependence of the activation and free energy barriers on the thermodynamic reaction energy or reaction Gibbs free energy, we used a three-variable linear model, which was demonstrated to be more precise than the two-variable Evans–Polanyi linear free energy model and more succinct than the three-variable Marcus-theory-based nonlinear HAA model. The present work provides not only a more thorough understanding of the compositions of the barriers to the HAA reactions of NHC-boranes and the HAA reactivities of the substrates but also fresh insights into the suitability of various models for describing the relationships between the kinetic and thermodynamic physical quantities. |
format | Online Article Text |
id | pubmed-7582687 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-75826872020-10-28 DFT Investigation of Hydrogen Atom Abstraction from NHC-Boranes by Methyl, Ethyl and Cyanomethyl Radicals—Composition and Correlation Analysis of Kinetic Barriers Qu, Hong-jie Yuan, Lang Jia, Cai-xin Yu, Hai-tao Xu, Hui Molecules Article Understanding the hydrogen atom abstraction (HAA) reactions of N-heterocyclic carbene (NHC)-boranes is essential for extending the practical applications of boron chemistry. In this study, density functional theory (DFT) computations were performed for the HAA reactions of a series of NHC-boranes attacked by (•)CH(2)CN, Me(•) and Et(•) radicals. Using the computed data, we investigated the correlations of the activation and free energy barriers with their components, including the intrinsic barrier, the thermal contribution of the thermodynamic reaction energy to the kinetic barriers, the activation Gibbs free energy correction and the activation zero-point vibrational energy correction. Furthermore, to describe the dependence of the activation and free energy barriers on the thermodynamic reaction energy or reaction Gibbs free energy, we used a three-variable linear model, which was demonstrated to be more precise than the two-variable Evans–Polanyi linear free energy model and more succinct than the three-variable Marcus-theory-based nonlinear HAA model. The present work provides not only a more thorough understanding of the compositions of the barriers to the HAA reactions of NHC-boranes and the HAA reactivities of the substrates but also fresh insights into the suitability of various models for describing the relationships between the kinetic and thermodynamic physical quantities. MDPI 2020-10-01 /pmc/articles/PMC7582687/ /pubmed/33019654 http://dx.doi.org/10.3390/molecules25194509 Text en © 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Qu, Hong-jie Yuan, Lang Jia, Cai-xin Yu, Hai-tao Xu, Hui DFT Investigation of Hydrogen Atom Abstraction from NHC-Boranes by Methyl, Ethyl and Cyanomethyl Radicals—Composition and Correlation Analysis of Kinetic Barriers |
title | DFT Investigation of Hydrogen Atom Abstraction from NHC-Boranes by Methyl, Ethyl and Cyanomethyl Radicals—Composition and Correlation Analysis of Kinetic Barriers |
title_full | DFT Investigation of Hydrogen Atom Abstraction from NHC-Boranes by Methyl, Ethyl and Cyanomethyl Radicals—Composition and Correlation Analysis of Kinetic Barriers |
title_fullStr | DFT Investigation of Hydrogen Atom Abstraction from NHC-Boranes by Methyl, Ethyl and Cyanomethyl Radicals—Composition and Correlation Analysis of Kinetic Barriers |
title_full_unstemmed | DFT Investigation of Hydrogen Atom Abstraction from NHC-Boranes by Methyl, Ethyl and Cyanomethyl Radicals—Composition and Correlation Analysis of Kinetic Barriers |
title_short | DFT Investigation of Hydrogen Atom Abstraction from NHC-Boranes by Methyl, Ethyl and Cyanomethyl Radicals—Composition and Correlation Analysis of Kinetic Barriers |
title_sort | dft investigation of hydrogen atom abstraction from nhc-boranes by methyl, ethyl and cyanomethyl radicals—composition and correlation analysis of kinetic barriers |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7582687/ https://www.ncbi.nlm.nih.gov/pubmed/33019654 http://dx.doi.org/10.3390/molecules25194509 |
work_keys_str_mv | AT quhongjie dftinvestigationofhydrogenatomabstractionfromnhcboranesbymethylethylandcyanomethylradicalscompositionandcorrelationanalysisofkineticbarriers AT yuanlang dftinvestigationofhydrogenatomabstractionfromnhcboranesbymethylethylandcyanomethylradicalscompositionandcorrelationanalysisofkineticbarriers AT jiacaixin dftinvestigationofhydrogenatomabstractionfromnhcboranesbymethylethylandcyanomethylradicalscompositionandcorrelationanalysisofkineticbarriers AT yuhaitao dftinvestigationofhydrogenatomabstractionfromnhcboranesbymethylethylandcyanomethylradicalscompositionandcorrelationanalysisofkineticbarriers AT xuhui dftinvestigationofhydrogenatomabstractionfromnhcboranesbymethylethylandcyanomethylradicalscompositionandcorrelationanalysisofkineticbarriers |