Cargando…
Condition-Based Maintenance with Reinforcement Learning for Dry Gas Pipeline Subject to Internal Corrosion
Gas pipeline systems are one of the largest energy infrastructures in the world and are known to be very efficient and reliable. However, this does not mean they are prone to no risk. Corrosion is a significant problem in gas pipelines that imposes large risks such as ruptures and leakage to the env...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7582701/ https://www.ncbi.nlm.nih.gov/pubmed/33036494 http://dx.doi.org/10.3390/s20195708 |
_version_ | 1783599252275986432 |
---|---|
author | Mahmoodzadeh, Zahra Wu, Keo-Yuan Lopez Droguett, Enrique Mosleh, Ali |
author_facet | Mahmoodzadeh, Zahra Wu, Keo-Yuan Lopez Droguett, Enrique Mosleh, Ali |
author_sort | Mahmoodzadeh, Zahra |
collection | PubMed |
description | Gas pipeline systems are one of the largest energy infrastructures in the world and are known to be very efficient and reliable. However, this does not mean they are prone to no risk. Corrosion is a significant problem in gas pipelines that imposes large risks such as ruptures and leakage to the environment and the pipeline system. Therefore, various maintenance actions are performed routinely to ensure the integrity of the pipelines. The costs of the corrosion-related maintenance actions are a significant portion of the pipeline’s operation and maintenance costs, and minimizing this large cost is a highly compelling subject that has been addressed by many studies. In this paper, we investigate the benefits of applying reinforcement learning (RL) techniques to the corrosion-related maintenance management of dry gas pipelines. We first address the rising need for a simulated testbed by proposing a test bench that models corrosion degradation while interacting with the maintenance decision-maker within the RL environment. Second, we propose a condition-based maintenance management approach that leverages a data-driven RL decision-making methodology. An RL maintenance scheduler is applied to the proposed test bench, and the results show that applying the proposed condition-based maintenance management technique can reduce up to 58% of the maintenance costs compared to a periodic maintenance policy while securing pipeline reliability. |
format | Online Article Text |
id | pubmed-7582701 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-75827012020-10-28 Condition-Based Maintenance with Reinforcement Learning for Dry Gas Pipeline Subject to Internal Corrosion Mahmoodzadeh, Zahra Wu, Keo-Yuan Lopez Droguett, Enrique Mosleh, Ali Sensors (Basel) Article Gas pipeline systems are one of the largest energy infrastructures in the world and are known to be very efficient and reliable. However, this does not mean they are prone to no risk. Corrosion is a significant problem in gas pipelines that imposes large risks such as ruptures and leakage to the environment and the pipeline system. Therefore, various maintenance actions are performed routinely to ensure the integrity of the pipelines. The costs of the corrosion-related maintenance actions are a significant portion of the pipeline’s operation and maintenance costs, and minimizing this large cost is a highly compelling subject that has been addressed by many studies. In this paper, we investigate the benefits of applying reinforcement learning (RL) techniques to the corrosion-related maintenance management of dry gas pipelines. We first address the rising need for a simulated testbed by proposing a test bench that models corrosion degradation while interacting with the maintenance decision-maker within the RL environment. Second, we propose a condition-based maintenance management approach that leverages a data-driven RL decision-making methodology. An RL maintenance scheduler is applied to the proposed test bench, and the results show that applying the proposed condition-based maintenance management technique can reduce up to 58% of the maintenance costs compared to a periodic maintenance policy while securing pipeline reliability. MDPI 2020-10-07 /pmc/articles/PMC7582701/ /pubmed/33036494 http://dx.doi.org/10.3390/s20195708 Text en © 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Mahmoodzadeh, Zahra Wu, Keo-Yuan Lopez Droguett, Enrique Mosleh, Ali Condition-Based Maintenance with Reinforcement Learning for Dry Gas Pipeline Subject to Internal Corrosion |
title | Condition-Based Maintenance with Reinforcement Learning for Dry Gas Pipeline Subject to Internal Corrosion |
title_full | Condition-Based Maintenance with Reinforcement Learning for Dry Gas Pipeline Subject to Internal Corrosion |
title_fullStr | Condition-Based Maintenance with Reinforcement Learning for Dry Gas Pipeline Subject to Internal Corrosion |
title_full_unstemmed | Condition-Based Maintenance with Reinforcement Learning for Dry Gas Pipeline Subject to Internal Corrosion |
title_short | Condition-Based Maintenance with Reinforcement Learning for Dry Gas Pipeline Subject to Internal Corrosion |
title_sort | condition-based maintenance with reinforcement learning for dry gas pipeline subject to internal corrosion |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7582701/ https://www.ncbi.nlm.nih.gov/pubmed/33036494 http://dx.doi.org/10.3390/s20195708 |
work_keys_str_mv | AT mahmoodzadehzahra conditionbasedmaintenancewithreinforcementlearningfordrygaspipelinesubjecttointernalcorrosion AT wukeoyuan conditionbasedmaintenancewithreinforcementlearningfordrygaspipelinesubjecttointernalcorrosion AT lopezdroguettenrique conditionbasedmaintenancewithreinforcementlearningfordrygaspipelinesubjecttointernalcorrosion AT moslehali conditionbasedmaintenancewithreinforcementlearningfordrygaspipelinesubjecttointernalcorrosion |