Cargando…
Automatic Changes Detection between Outdated Building Maps and New VHR Images Based on Pre-Trained Fully Convolutional Feature Maps
Detecting changes between the existing building basemaps and newly acquired high spatial resolution remotely sensed (HRS) images is a time-consuming task. This is mainly because of the data labeling and poor performance of hand-crafted features. In this paper, for efficient feature extraction, we pr...
Autores principales: | Zhang, Yunsheng, Zhu, Yaochen, Li, Haifeng, Chen, Siyang, Peng, Jian, Zhao, Ling |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7582738/ https://www.ncbi.nlm.nih.gov/pubmed/32992580 http://dx.doi.org/10.3390/s20195538 |
Ejemplares similares
-
LiDAR-Based System and Optical VHR Data for Building Detection and Mapping †
por: Ullo, Silvia Liberata, et al.
Publicado: (2020) -
National-scale cropland mapping based on spectral-temporal features and outdated land cover information
por: Waldner, François, et al.
Publicado: (2017) -
Automatic Detection of Individual Trees from VHR Satellite Images Using Scale-Space Methods
por: Mahour, Milad, et al.
Publicado: (2020) -
Accurate Weed Mapping and Prescription Map Generation Based on Fully Convolutional Networks Using UAV Imagery
por: Huang, Huasheng, et al.
Publicado: (2018) -
Automatic Detection of Cone Photoreceptors With Fully Convolutional Networks
por: Hamwood, Jared, et al.
Publicado: (2019)