Cargando…
MicroRNA-31 Regulates Expression of Wntless in Both Drosophila melanogaster and Human Oral Cancer Cells
Recent comparative studies have indicated distinct expression profiles of short, non-coding microRNAs (miRNAs) in various types of cancer, including oral squamous cell carcinoma (OSCC). In this study, we employed a hybrid approach using Drosophila melanogaster as well as OSCC cell lines to validate...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7582764/ https://www.ncbi.nlm.nih.gov/pubmed/33007980 http://dx.doi.org/10.3390/ijms21197232 |
Sumario: | Recent comparative studies have indicated distinct expression profiles of short, non-coding microRNAs (miRNAs) in various types of cancer, including oral squamous cell carcinoma (OSCC). In this study, we employed a hybrid approach using Drosophila melanogaster as well as OSCC cell lines to validate putative targets of oral cancer-related miRNAs both in vivo and in vitro. Following overexpression of Drosophila miR-31, we found a significant decrease in the size of the imaginal wing discs and downregulation of a subset of putative targets, including wntless (wls), an important regulator of the Wnt signaling pathway. Parallel experiments performed in OSCC cells have also confirmed a similar miR-31-dependent regulation of human WLS that was not initially predicted as targets of human miR-31. Furthermore, we found subsequent downregulation of cyclin D1 and c-MYC, two of the main transcriptional targets of Wnt signaling, suggesting a potential role of miR-31 in regulating the cell cycle and proliferation of OSCC cells. Taken together, our Drosophila-based in vivo system in conjunction with the human in vitro platform will thus provide a novel insight into a mammal-to-Drosophila-to-mammal approach to validate putative targets of human miRNA and to better understand the miRNA-target relationships that play an important role in the pathophysiology of oral cancer. |
---|