Cargando…
Image Compressive Sensing via Hybrid Nonlocal Sparsity Regularization
This paper focuses on image compressive sensing (CS). As the intrinsic properties of natural images, nonlocal self-similarity and sparse representation have been widely used in various image processing tasks. Most existing image CS methods apply either self-adaptive dictionary (e.g., principle compo...
Autores principales: | Li, Lizhao, Xiao, Song, Zhao, Yimin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7582868/ https://www.ncbi.nlm.nih.gov/pubmed/33023040 http://dx.doi.org/10.3390/s20195666 |
Ejemplares similares
-
Temporal sparsity exploiting nonlocal regularization for 4D computed tomography reconstruction
por: Kazantsev, Daniil, et al.
Publicado: (2016) -
Compressive Sensing via Nonlocal Smoothed Rank Function
por: Fan, Ya-Ru, et al.
Publicado: (2016) -
Compressed Sensing MR Image Reconstruction Exploiting TGV and Wavelet Sparsity
por: Zhao, Di, et al.
Publicado: (2014) -
Fast Terahertz Imaging Model Based on Group Sparsity and Nonlocal Self-Similarity
por: Ren, Xiaozhen, et al.
Publicado: (2022) -
Accelerated phase contrast imaging using compressed sensing with complex difference sparsity
por: Kwak, Yongjun, et al.
Publicado: (2012)