Cargando…
Occupancy Prediction Using Low-Cost and Low-Resolution Heat Sensors for Smart Offices
Solving the challenge of occupancy prediction is crucial in order to design efficient and sustainable office spaces and automate lighting, heating, and air circulation in these facilities. In office spaces where large areas need to be observed, multiple sensors must be used for full coverage. In the...
Autores principales: | Sirmacek, Beril, Riveiro, Maria |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7582900/ https://www.ncbi.nlm.nih.gov/pubmed/32992789 http://dx.doi.org/10.3390/s20195497 |
Ejemplares similares
-
Sensor Fusion and Convolutional Neural Networks for Indoor Occupancy Prediction Using Multiple Low-Cost Low-Resolution Heat Sensor Data
por: Arvidsson, Simon, et al.
Publicado: (2021) -
A Low-Cost Smart Sensor Network for Catchment Monitoring
por: Zhang, Dian, et al.
Publicado: (2019) -
Low-Power Low-Cost Wireless Flood Sensor for Smart Home Systems
por: Teixidó, Pedro, et al.
Publicado: (2018) -
Toward reliable automatic liver and tumor segmentation using convolutional neural network based on 2.5D models
por: Wardhana, Girindra, et al.
Publicado: (2020) -
BLESeis: Low-Cost IoT Sensor for Smart Earthquake Detection and Notification
por: Won, Jongbin, et al.
Publicado: (2020)