Cargando…

Resolution Improvement of Light Field Imaging via a Nematic Liquid Crystal Microlens with Added Multi-Walled Carbon Nanotubes

A relatively simple method to improve the image resolution of light field based on a liquid crystal (LC) microlens doped with multi-walled carbon nanotubes (MWCNTs) was developed and evaluated. As the nanoparticles were doped in LC, its electro-optical features could enhance, leading to a short resp...

Descripción completa

Detalles Bibliográficos
Autores principales: Li, Hui, Yu, Yi, Peng, Jing, Wu, Yuntao, Zhang, Yanduo
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7582984/
https://www.ncbi.nlm.nih.gov/pubmed/32998348
http://dx.doi.org/10.3390/s20195557
Descripción
Sumario:A relatively simple method to improve the image resolution of light field based on a liquid crystal (LC) microlens doped with multi-walled carbon nanotubes (MWCNTs) was developed and evaluated. As the nanoparticles were doped in LC, its electro-optical features could enhance, leading to a short response time compared to the pure LC microlens. With the maximum use of the proposed LC microlens, a method combining aperiodicity extraction and weighted average algorithm was adopted to realize the high-resolution light field imaging. The aperiodicity extraction method was proposed, which could effectively improve resolution of view angle image. For synthesizing the full resolution image at 0 Vrms and the extracted view angle image of light field imaging at 2.0 Vrms, the final high-resolution light field imaging could be obtained in a short time by weighted average algorithm. In this way, the common problem of low resolution in light field imaging could be solved. This proposed method was in good agreement with our experimental results. And it was also in line with the development of the trend of the smart imaging sensor combining algorithm with hardware.