Cargando…

Modulation of the Apurinic/Apyrimidinic Endonuclease Activity of Human APE1 and of Its Natural Polymorphic Variants by Base Excision Repair Proteins

Human apurinic/apyrimidinic endonuclease 1 (APE1) is known to be a critical player of the base excision repair (BER) pathway. In general, BER involves consecutive actions of DNA glycosylases, AP endonucleases, DNA polymerases, and DNA ligases. It is known that these proteins interact with APE1 eithe...

Descripción completa

Detalles Bibliográficos
Autores principales: Kladova, Olga A., Alekseeva, Irina V., Saparbaev, Murat, Fedorova, Olga S., Kuznetsov, Nikita A.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7583023/
https://www.ncbi.nlm.nih.gov/pubmed/32998246
http://dx.doi.org/10.3390/ijms21197147
_version_ 1783599326065328128
author Kladova, Olga A.
Alekseeva, Irina V.
Saparbaev, Murat
Fedorova, Olga S.
Kuznetsov, Nikita A.
author_facet Kladova, Olga A.
Alekseeva, Irina V.
Saparbaev, Murat
Fedorova, Olga S.
Kuznetsov, Nikita A.
author_sort Kladova, Olga A.
collection PubMed
description Human apurinic/apyrimidinic endonuclease 1 (APE1) is known to be a critical player of the base excision repair (BER) pathway. In general, BER involves consecutive actions of DNA glycosylases, AP endonucleases, DNA polymerases, and DNA ligases. It is known that these proteins interact with APE1 either at upstream or downstream steps of BER. Therefore, we may propose that even a minor disturbance of protein–protein interactions on the DNA template reduces coordination and repair efficiency. Here, the ability of various human DNA repair enzymes (such as DNA glycosylases OGG1, UNG2, and AAG; DNA polymerase Polβ; or accessory proteins XRCC1 and PCNA) to influence the activity of wild-type (WT) APE1 and its seven natural polymorphic variants (R221C, N222H, R237A, G241R, M270T, R274Q, and P311S) was tested. Förster resonance energy transfer–based kinetic analysis of abasic site cleavage in a model DNA substrate was conducted to detect the effects of interacting proteins on the activity of WT APE1 and its single-nucleotide polymorphism (SNP) variants. The results revealed that WT APE1 activity was stimulated by almost all tested DNA repair proteins. For the SNP variants, the matters were more complicated. Analysis of two SNP variants, R237A and G241R, suggested that a positive charge in this area of the APE1 surface impairs the protein–protein interactions. In contrast, variant R221C (where the affected residue is located near the DNA-binding site) showed permanently lower activation relative to WT APE1, whereas neighboring SNP N222H did not cause a noticeable difference as compared to WT APE1. Buried substitution P311S had an inconsistent effect, whereas each substitution at the DNA-binding site, M270T and R274Q, resulted in the lowest stimulation by BER proteins. Protein–protein molecular docking was performed between repair proteins to identify amino acid residues involved in their interactions. The data uncovered differences in the effects of BER proteins on APE1, indicating an important role of protein–protein interactions in the coordination of the repair pathway.
format Online
Article
Text
id pubmed-7583023
institution National Center for Biotechnology Information
language English
publishDate 2020
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-75830232020-10-28 Modulation of the Apurinic/Apyrimidinic Endonuclease Activity of Human APE1 and of Its Natural Polymorphic Variants by Base Excision Repair Proteins Kladova, Olga A. Alekseeva, Irina V. Saparbaev, Murat Fedorova, Olga S. Kuznetsov, Nikita A. Int J Mol Sci Article Human apurinic/apyrimidinic endonuclease 1 (APE1) is known to be a critical player of the base excision repair (BER) pathway. In general, BER involves consecutive actions of DNA glycosylases, AP endonucleases, DNA polymerases, and DNA ligases. It is known that these proteins interact with APE1 either at upstream or downstream steps of BER. Therefore, we may propose that even a minor disturbance of protein–protein interactions on the DNA template reduces coordination and repair efficiency. Here, the ability of various human DNA repair enzymes (such as DNA glycosylases OGG1, UNG2, and AAG; DNA polymerase Polβ; or accessory proteins XRCC1 and PCNA) to influence the activity of wild-type (WT) APE1 and its seven natural polymorphic variants (R221C, N222H, R237A, G241R, M270T, R274Q, and P311S) was tested. Förster resonance energy transfer–based kinetic analysis of abasic site cleavage in a model DNA substrate was conducted to detect the effects of interacting proteins on the activity of WT APE1 and its single-nucleotide polymorphism (SNP) variants. The results revealed that WT APE1 activity was stimulated by almost all tested DNA repair proteins. For the SNP variants, the matters were more complicated. Analysis of two SNP variants, R237A and G241R, suggested that a positive charge in this area of the APE1 surface impairs the protein–protein interactions. In contrast, variant R221C (where the affected residue is located near the DNA-binding site) showed permanently lower activation relative to WT APE1, whereas neighboring SNP N222H did not cause a noticeable difference as compared to WT APE1. Buried substitution P311S had an inconsistent effect, whereas each substitution at the DNA-binding site, M270T and R274Q, resulted in the lowest stimulation by BER proteins. Protein–protein molecular docking was performed between repair proteins to identify amino acid residues involved in their interactions. The data uncovered differences in the effects of BER proteins on APE1, indicating an important role of protein–protein interactions in the coordination of the repair pathway. MDPI 2020-09-28 /pmc/articles/PMC7583023/ /pubmed/32998246 http://dx.doi.org/10.3390/ijms21197147 Text en © 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Kladova, Olga A.
Alekseeva, Irina V.
Saparbaev, Murat
Fedorova, Olga S.
Kuznetsov, Nikita A.
Modulation of the Apurinic/Apyrimidinic Endonuclease Activity of Human APE1 and of Its Natural Polymorphic Variants by Base Excision Repair Proteins
title Modulation of the Apurinic/Apyrimidinic Endonuclease Activity of Human APE1 and of Its Natural Polymorphic Variants by Base Excision Repair Proteins
title_full Modulation of the Apurinic/Apyrimidinic Endonuclease Activity of Human APE1 and of Its Natural Polymorphic Variants by Base Excision Repair Proteins
title_fullStr Modulation of the Apurinic/Apyrimidinic Endonuclease Activity of Human APE1 and of Its Natural Polymorphic Variants by Base Excision Repair Proteins
title_full_unstemmed Modulation of the Apurinic/Apyrimidinic Endonuclease Activity of Human APE1 and of Its Natural Polymorphic Variants by Base Excision Repair Proteins
title_short Modulation of the Apurinic/Apyrimidinic Endonuclease Activity of Human APE1 and of Its Natural Polymorphic Variants by Base Excision Repair Proteins
title_sort modulation of the apurinic/apyrimidinic endonuclease activity of human ape1 and of its natural polymorphic variants by base excision repair proteins
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7583023/
https://www.ncbi.nlm.nih.gov/pubmed/32998246
http://dx.doi.org/10.3390/ijms21197147
work_keys_str_mv AT kladovaolgaa modulationoftheapurinicapyrimidinicendonucleaseactivityofhumanape1andofitsnaturalpolymorphicvariantsbybaseexcisionrepairproteins
AT alekseevairinav modulationoftheapurinicapyrimidinicendonucleaseactivityofhumanape1andofitsnaturalpolymorphicvariantsbybaseexcisionrepairproteins
AT saparbaevmurat modulationoftheapurinicapyrimidinicendonucleaseactivityofhumanape1andofitsnaturalpolymorphicvariantsbybaseexcisionrepairproteins
AT fedorovaolgas modulationoftheapurinicapyrimidinicendonucleaseactivityofhumanape1andofitsnaturalpolymorphicvariantsbybaseexcisionrepairproteins
AT kuznetsovnikitaa modulationoftheapurinicapyrimidinicendonucleaseactivityofhumanape1andofitsnaturalpolymorphicvariantsbybaseexcisionrepairproteins