Cargando…
Short-Term Foreshocks as Key Information for Mainshock Timing and Rupture: The M(w)6.8 25 October 2018 Zakynthos Earthquake, Hellenic Subduction Zone
Significant seismicity anomalies preceded the 25 October 2018 mainshock (M(w) = 6.8), NW Hellenic Arc: a transient intermediate-term (~2 yrs) swarm and a short-term (last 6 months) cluster with typical time-size-space foreshock patterns: activity increase, b-value drop, foreshocks move towards mains...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7583035/ https://www.ncbi.nlm.nih.gov/pubmed/33028009 http://dx.doi.org/10.3390/s20195681 |
Sumario: | Significant seismicity anomalies preceded the 25 October 2018 mainshock (M(w) = 6.8), NW Hellenic Arc: a transient intermediate-term (~2 yrs) swarm and a short-term (last 6 months) cluster with typical time-size-space foreshock patterns: activity increase, b-value drop, foreshocks move towards mainshock epicenter. The anomalies were identified with both a standard earthquake catalogue and a catalogue relocated with the Non-Linear Location (NLLoc) algorithm. Teleseismic P-waveforms inversion showed oblique-slip rupture with strike 10°, dip 24°, length ~70 km, faulting depth ~24 km, velocity 3.2 km/s, duration 18 s, slip 1.8 m within the asperity, seismic moment 2.0 × 10(26) dyne*cm. The two largest imminent foreshocks (M(w) = 4.1, M(w) = 4.8) occurred very close to the mainshock hypocenter. The asperity bounded up-dip by the foreshocks area and at the north by the foreshocks/swarm area. The accelerated foreshocks very likely promoted slip accumulation contributing to unlocking the asperity and breaking with the mainshock. The rupture initially propagated northwards, but after 6 s stopped at the north bound and turned southwards. Most early aftershocks concentrated in the foreshocks/swarm area. This distribution was controlled not only by stress transfer from the mainshock but also by pre-existing stress. In the frame of a program for regular monitoring and near real-time identification of seismicity anomalies, foreshock patterns would be detectable at least three months prior the mainshock, thus demonstrating the significant predictive value of foreshocks. |
---|