Cargando…
A Hybrid Intrusion Detection Model Combining SAE with Kernel Approximation in Internet of Things
Owing to the constraints of time and space complexity, network intrusion detection systems (NIDSs) based on support vector machines (SVMs) face the “curse of dimensionality” in a large-scale, high-dimensional feature space. This study proposes a joint training model that combines a stacked autoencod...
Autores principales: | Wu, Yukun, Lee, Wei William, Gong, Xuan, Wang, Hui |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7583055/ https://www.ncbi.nlm.nih.gov/pubmed/33049957 http://dx.doi.org/10.3390/s20195710 |
Ejemplares similares
-
Hybridized bio-inspired intrusion detection system for Internet of Things
por: Singh, Richa, et al.
Publicado: (2023) -
Towards Deep-Learning-Driven Intrusion Detection for the Internet of Things
por: Thamilarasu, Geethapriya, et al.
Publicado: (2019) -
A Hybrid Spider Monkey and Hierarchical Particle Swarm Optimization Approach for Intrusion Detection on Internet of Things
por: Ethala, Sandhya, et al.
Publicado: (2022) -
Intrusion Detection Model for Industrial Internet of Things Based on Improved Autoencoder
por: Zhang, Wumei, et al.
Publicado: (2022) -
An Ensemble-Based Multiclass Classifier for Intrusion Detection Using Internet of Things
por: Rani, Deepti, et al.
Publicado: (2022)