Cargando…

Development and internal validation of prognostic models to predict negative health outcomes in older patients with multimorbidity and polypharmacy in general practice

BACKGROUND: Polypharmacy interventions are resource-intensive and should be targeted to those at risk of negative health outcomes. Our aim was to develop and internally validate prognostic models to predict health-related quality of life (HRQoL) and the combined outcome of falls, hospitalisation, in...

Descripción completa

Detalles Bibliográficos
Autores principales: Müller, Beate S, Uhlmann, Lorenz, Ihle, Peter, Stock, Christian, von Buedingen, Fiona, Beyer, Martin, Gerlach, Ferdinand M, Perera, Rafael, Valderas, Jose Maria, Glasziou, Paul, van den Akker, Marjan, Muth, Christiane
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BMJ Publishing Group 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7583076/
https://www.ncbi.nlm.nih.gov/pubmed/33093036
http://dx.doi.org/10.1136/bmjopen-2020-039747
Descripción
Sumario:BACKGROUND: Polypharmacy interventions are resource-intensive and should be targeted to those at risk of negative health outcomes. Our aim was to develop and internally validate prognostic models to predict health-related quality of life (HRQoL) and the combined outcome of falls, hospitalisation, institutionalisation and nursing care needs, in older patients with multimorbidity and polypharmacy in general practices. METHODS: Design: two independent data sets, one comprising health insurance claims data (n=592 456), the other data from the PRIoritising MUltimedication in Multimorbidity (PRIMUM) cluster randomised controlled trial (n=502). Population: ≥60 years, ≥5 drugs, ≥3 chronic diseases, excluding dementia. Outcomes: combined outcome of falls, hospitalisation, institutionalisation and nursing care needs (after 6, 9 and 24 months) (claims data); and HRQoL (after 6 and 9 months) (trial data). Predictor variables in both data sets: age, sex, morbidity-related variables (disease count), medication-related variables (European Union-Potentially Inappropriate Medication list (EU-PIM list)) and health service utilisation. Predictor variables exclusively in trial data: additional socio-demographics, morbidity-related variables (Cumulative Illness Rating Scale, depression), Medication Appropriateness Index (MAI), lifestyle, functional status and HRQoL (EuroQol EQ-5D-3L). Analysis: mixed regression models, combined with stepwise variable selection, 10-fold cross validation and sensitivity analyses. RESULTS: Most important predictors of EQ-5D-3L at 6 months in best model (Nagelkerke’s R² 0.507) were depressive symptoms (−2.73 (95% CI: −3.56 to −1.91)), MAI (−0.39 (95% CI: −0.7 to −0.08)), baseline EQ-5D-3L (0.55 (95% CI: 0.47 to 0.64)). Models based on claims data and those predicting long-term outcomes based on both data sets produced low R² values. In claims data-based model with highest explanatory power (R²=0.16), previous falls/fall-related injuries, previous hospitalisations, age, number of involved physicians and disease count were most important predictor variables. CONCLUSIONS: Best trial data-based model predicted HRQoL after 6 months well and included parameters of well-being not found in claims. Performance of claims data-based models and models predicting long-term outcomes was relatively weak. For generalisability, future studies should refit models by considering parameters representing well-being and functional status.