Cargando…
Consistency and objectivity of automated embryo assessments using deep neural networks
OBJECTIVE: To evaluate the consistency and objectivity of deep neural networks in embryo scoring and making disposition decisions for biopsy and cryopreservation in comparison to grading by highly trained embryologists. DESIGN: Prospective double-blind study using retrospective data. SETTING: U.S.-b...
Autores principales: | Bormann, Charles L., Thirumalaraju, Prudhvi, Kanakasabapathy, Manoj Kumar, Kandula, Hemanth, Souter, Irene, Dimitriadis, Irene, Gupta, Raghav, Pooniwala, Rohan, Shafiee, Hadi |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7583085/ https://www.ncbi.nlm.nih.gov/pubmed/32228880 http://dx.doi.org/10.1016/j.fertnstert.2019.12.004 |
Ejemplares similares
-
Evaluation of deep convolutional neural networks in classifying human embryo images based on their morphological quality
por: Thirumalaraju, Prudhvi, et al.
Publicado: (2021) -
Performance of a deep learning based neural network in the selection of human blastocysts for implantation
por: Bormann, Charles L, et al.
Publicado: (2020) -
Automated smartphone-based system for measuring sperm viability, DNA fragmentation, and hyaluronic binding assay score
por: Dimitriadis, Irene, et al.
Publicado: (2019) -
Validation of a smartphone-based device to measure concentration, motility, and morphology in swine ejaculates
por: Suárez-Trujillo, Aridany, et al.
Publicado: (2022) -
Virus detection using nanoparticles and deep neural network–enabled smartphone system
por: Draz, Mohamed S., et al.
Publicado: (2020)