Cargando…

A mathematical framework for estimating risk of airborne transmission of COVID-19 with application to face mask use and social distancing

A mathematical model for estimating the risk of airborne transmission of a respiratory infection such as COVID-19 is presented. The model employs basic concepts from fluid dynamics and incorporates the known scope of factors involved in the airborne transmission of such diseases. Simplicity in the m...

Descripción completa

Detalles Bibliográficos
Autores principales: Mittal, Rajat, Meneveau, Charles, Wu, Wen
Formato: Online Artículo Texto
Lenguaje:English
Publicado: AIP Publishing LLC 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7583361/
https://www.ncbi.nlm.nih.gov/pubmed/33100806
http://dx.doi.org/10.1063/5.0025476
Descripción
Sumario:A mathematical model for estimating the risk of airborne transmission of a respiratory infection such as COVID-19 is presented. The model employs basic concepts from fluid dynamics and incorporates the known scope of factors involved in the airborne transmission of such diseases. Simplicity in the mathematical form of the model is by design so that it can serve not only as a common basis for scientific inquiry across disciplinary boundaries but it can also be understandable by a broad audience outside science and academia. The caveats and limitations of the model are discussed in detail. The model is used to assess the protection from transmission afforded by face coverings made from a variety of fabrics. The reduction in the transmission risk associated with increased physical distance between the host and susceptible is also quantified by coupling the model with available and new large eddy simulation data on scalar dispersion in canonical flows. Finally, the effect of the level of physical activity (or exercise intensity) of the host and the susceptible in enhancing the transmission risk is also assessed.