Cargando…

Geologic Map of the Niobe Planitia Region (I‐2467), Venus

We present a 1:10M scale geologic map of the Niobe Planitia region of Venus (0°N–57°N/60°E–180°E). We herein refer to this area as the Niobe Map Area (NMA). Geologic mapping employed NASA Magellan synthetic aperture radar and altimetry data. The NMA geologic map and its companion Aphrodite Map Area...

Descripción completa

Detalles Bibliográficos
Autores principales: López, Iván, Hansen, Vicki L.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7583383/
https://www.ncbi.nlm.nih.gov/pubmed/33134436
http://dx.doi.org/10.1029/2020EA001171
_version_ 1783599385466109952
author López, Iván
Hansen, Vicki L.
author_facet López, Iván
Hansen, Vicki L.
author_sort López, Iván
collection PubMed
description We present a 1:10M scale geologic map of the Niobe Planitia region of Venus (0°N–57°N/60°E–180°E). We herein refer to this area as the Niobe Map Area (NMA). Geologic mapping employed NASA Magellan synthetic aperture radar and altimetry data. The NMA geologic map and its companion Aphrodite Map Area (AMA) cover ~25% of Venus' surface, providing an important and unique perspective to study global and regional geologic processes. Both areas display a regional coherence of preserved geologic patterns that record three sequential geologic eras: the ancient era, the Artemis superstructure era, and the youngest fracture zone era. The NMA preserves a limited record of the fracture zone era, contrary to the AMA. However, the NMA hosts a diverse and rich assemblage of material and structures of the ancient era and structures that define the Artemis superstructure era. These two eras likely overlap in time and account for the formation of basement materials and lower plain units. Impact craters formed throughout the NMA recorded history. Approximately 40% of the impact craters show interior flood deposits, indicating that a significant number of NMA impact craters experienced notable geological events after impact crater formation. This and other geologic relations record a geohistory inconsistent with postulated global catastrophic resurfacing. Together, the NMA and the AMA record a rich geologic history of the surface of Venus that provide a framework to formulate new working hypotheses of Venus evolution and to plan future studies of the planet.
format Online
Article
Text
id pubmed-7583383
institution National Center for Biotechnology Information
language English
publishDate 2020
publisher John Wiley and Sons Inc.
record_format MEDLINE/PubMed
spelling pubmed-75833832020-10-29 Geologic Map of the Niobe Planitia Region (I‐2467), Venus López, Iván Hansen, Vicki L. Earth Space Sci Research Articles We present a 1:10M scale geologic map of the Niobe Planitia region of Venus (0°N–57°N/60°E–180°E). We herein refer to this area as the Niobe Map Area (NMA). Geologic mapping employed NASA Magellan synthetic aperture radar and altimetry data. The NMA geologic map and its companion Aphrodite Map Area (AMA) cover ~25% of Venus' surface, providing an important and unique perspective to study global and regional geologic processes. Both areas display a regional coherence of preserved geologic patterns that record three sequential geologic eras: the ancient era, the Artemis superstructure era, and the youngest fracture zone era. The NMA preserves a limited record of the fracture zone era, contrary to the AMA. However, the NMA hosts a diverse and rich assemblage of material and structures of the ancient era and structures that define the Artemis superstructure era. These two eras likely overlap in time and account for the formation of basement materials and lower plain units. Impact craters formed throughout the NMA recorded history. Approximately 40% of the impact craters show interior flood deposits, indicating that a significant number of NMA impact craters experienced notable geological events after impact crater formation. This and other geologic relations record a geohistory inconsistent with postulated global catastrophic resurfacing. Together, the NMA and the AMA record a rich geologic history of the surface of Venus that provide a framework to formulate new working hypotheses of Venus evolution and to plan future studies of the planet. John Wiley and Sons Inc. 2020-09-24 2020-09 /pmc/articles/PMC7583383/ /pubmed/33134436 http://dx.doi.org/10.1029/2020EA001171 Text en ©2020. The Authors. This is an open access article under the terms of the http://creativecommons.org/licenses/by-nc-nd/4.0/ License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non‐commercial and no modifications or adaptations are made.
spellingShingle Research Articles
López, Iván
Hansen, Vicki L.
Geologic Map of the Niobe Planitia Region (I‐2467), Venus
title Geologic Map of the Niobe Planitia Region (I‐2467), Venus
title_full Geologic Map of the Niobe Planitia Region (I‐2467), Venus
title_fullStr Geologic Map of the Niobe Planitia Region (I‐2467), Venus
title_full_unstemmed Geologic Map of the Niobe Planitia Region (I‐2467), Venus
title_short Geologic Map of the Niobe Planitia Region (I‐2467), Venus
title_sort geologic map of the niobe planitia region (i‐2467), venus
topic Research Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7583383/
https://www.ncbi.nlm.nih.gov/pubmed/33134436
http://dx.doi.org/10.1029/2020EA001171
work_keys_str_mv AT lopezivan geologicmapoftheniobeplanitiaregioni2467venus
AT hansenvickil geologicmapoftheniobeplanitiaregioni2467venus