Cargando…
A Lagrangian Snow‐Evolution System for Sea‐Ice Applications (SnowModel‐LG): Part I—Model Description
A Lagrangian snow‐evolution model (SnowModel‐LG) was used to produce daily, pan‐Arctic, snow‐on‐sea‐ice, snow property distributions on a 25 × 25‐km grid, from 1 August 1980 through 31 July 2018 (38 years). The model was forced with NASA's Modern Era Retrospective‐Analysis for Research and Appl...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7583384/ https://www.ncbi.nlm.nih.gov/pubmed/33133995 http://dx.doi.org/10.1029/2019JC015913 |
_version_ | 1783599385689456640 |
---|---|
author | Liston, Glen E. Itkin, Polona Stroeve, Julienne Tschudi, Mark Stewart, J. Scott Pedersen, Stine H. Reinking, Adele K. Elder, Kelly |
author_facet | Liston, Glen E. Itkin, Polona Stroeve, Julienne Tschudi, Mark Stewart, J. Scott Pedersen, Stine H. Reinking, Adele K. Elder, Kelly |
author_sort | Liston, Glen E. |
collection | PubMed |
description | A Lagrangian snow‐evolution model (SnowModel‐LG) was used to produce daily, pan‐Arctic, snow‐on‐sea‐ice, snow property distributions on a 25 × 25‐km grid, from 1 August 1980 through 31 July 2018 (38 years). The model was forced with NASA's Modern Era Retrospective‐Analysis for Research and Applications‐Version 2 (MERRA‐2) and European Centre for Medium‐Range Weather Forecasts (ECMWF) ReAnalysis‐5th Generation (ERA5) atmospheric reanalyses, and National Snow and Ice Data Center (NSIDC) sea ice parcel concentration and trajectory data sets (approximately 61,000, 14 × 14‐km parcels). The simulations performed full surface and internal energy and mass balances within a multilayer snowpack evolution system. Processes and features accounted for included rainfall, snowfall, sublimation from static‐surfaces and blowing‐snow, snow melt, snow density evolution, snow temperature profiles, energy and mass transfers within the snowpack, superimposed ice, and ice dynamics. The simulations produced horizontal snow spatial structures that likely exist in the natural system but have not been revealed in previous studies spanning these spatial and temporal domains. Blowing‐snow sublimation made a significant contribution to the snowpack mass budget. The superimposed ice layer was minimal and decreased over the last four decades. Snow carryover to the next accumulation season was minimal and sensitive to the melt‐season atmospheric forcing (e.g., the average summer melt period was 3 weeks or 50% longer with ERA5 forcing than MERRA‐2 forcing). Observed ice dynamics controlled the ice parcel age (in days), and ice age exerted a first‐order control on snow property evolution. |
format | Online Article Text |
id | pubmed-7583384 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | John Wiley and Sons Inc. |
record_format | MEDLINE/PubMed |
spelling | pubmed-75833842020-10-29 A Lagrangian Snow‐Evolution System for Sea‐Ice Applications (SnowModel‐LG): Part I—Model Description Liston, Glen E. Itkin, Polona Stroeve, Julienne Tschudi, Mark Stewart, J. Scott Pedersen, Stine H. Reinking, Adele K. Elder, Kelly J Geophys Res Oceans Research Articles A Lagrangian snow‐evolution model (SnowModel‐LG) was used to produce daily, pan‐Arctic, snow‐on‐sea‐ice, snow property distributions on a 25 × 25‐km grid, from 1 August 1980 through 31 July 2018 (38 years). The model was forced with NASA's Modern Era Retrospective‐Analysis for Research and Applications‐Version 2 (MERRA‐2) and European Centre for Medium‐Range Weather Forecasts (ECMWF) ReAnalysis‐5th Generation (ERA5) atmospheric reanalyses, and National Snow and Ice Data Center (NSIDC) sea ice parcel concentration and trajectory data sets (approximately 61,000, 14 × 14‐km parcels). The simulations performed full surface and internal energy and mass balances within a multilayer snowpack evolution system. Processes and features accounted for included rainfall, snowfall, sublimation from static‐surfaces and blowing‐snow, snow melt, snow density evolution, snow temperature profiles, energy and mass transfers within the snowpack, superimposed ice, and ice dynamics. The simulations produced horizontal snow spatial structures that likely exist in the natural system but have not been revealed in previous studies spanning these spatial and temporal domains. Blowing‐snow sublimation made a significant contribution to the snowpack mass budget. The superimposed ice layer was minimal and decreased over the last four decades. Snow carryover to the next accumulation season was minimal and sensitive to the melt‐season atmospheric forcing (e.g., the average summer melt period was 3 weeks or 50% longer with ERA5 forcing than MERRA‐2 forcing). Observed ice dynamics controlled the ice parcel age (in days), and ice age exerted a first‐order control on snow property evolution. John Wiley and Sons Inc. 2020-10-01 2020-10 /pmc/articles/PMC7583384/ /pubmed/33133995 http://dx.doi.org/10.1029/2019JC015913 Text en ©2020. The Authors. This is an open access article under the terms of the http://creativecommons.org/licenses/by-nc/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited and is not used for commercial purposes. |
spellingShingle | Research Articles Liston, Glen E. Itkin, Polona Stroeve, Julienne Tschudi, Mark Stewart, J. Scott Pedersen, Stine H. Reinking, Adele K. Elder, Kelly A Lagrangian Snow‐Evolution System for Sea‐Ice Applications (SnowModel‐LG): Part I—Model Description |
title | A Lagrangian Snow‐Evolution System for Sea‐Ice Applications (SnowModel‐LG): Part I—Model Description |
title_full | A Lagrangian Snow‐Evolution System for Sea‐Ice Applications (SnowModel‐LG): Part I—Model Description |
title_fullStr | A Lagrangian Snow‐Evolution System for Sea‐Ice Applications (SnowModel‐LG): Part I—Model Description |
title_full_unstemmed | A Lagrangian Snow‐Evolution System for Sea‐Ice Applications (SnowModel‐LG): Part I—Model Description |
title_short | A Lagrangian Snow‐Evolution System for Sea‐Ice Applications (SnowModel‐LG): Part I—Model Description |
title_sort | lagrangian snow‐evolution system for sea‐ice applications (snowmodel‐lg): part i—model description |
topic | Research Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7583384/ https://www.ncbi.nlm.nih.gov/pubmed/33133995 http://dx.doi.org/10.1029/2019JC015913 |
work_keys_str_mv | AT listonglene alagrangiansnowevolutionsystemforseaiceapplicationssnowmodellgpartimodeldescription AT itkinpolona alagrangiansnowevolutionsystemforseaiceapplicationssnowmodellgpartimodeldescription AT stroevejulienne alagrangiansnowevolutionsystemforseaiceapplicationssnowmodellgpartimodeldescription AT tschudimark alagrangiansnowevolutionsystemforseaiceapplicationssnowmodellgpartimodeldescription AT stewartjscott alagrangiansnowevolutionsystemforseaiceapplicationssnowmodellgpartimodeldescription AT pedersenstineh alagrangiansnowevolutionsystemforseaiceapplicationssnowmodellgpartimodeldescription AT reinkingadelek alagrangiansnowevolutionsystemforseaiceapplicationssnowmodellgpartimodeldescription AT elderkelly alagrangiansnowevolutionsystemforseaiceapplicationssnowmodellgpartimodeldescription AT listonglene lagrangiansnowevolutionsystemforseaiceapplicationssnowmodellgpartimodeldescription AT itkinpolona lagrangiansnowevolutionsystemforseaiceapplicationssnowmodellgpartimodeldescription AT stroevejulienne lagrangiansnowevolutionsystemforseaiceapplicationssnowmodellgpartimodeldescription AT tschudimark lagrangiansnowevolutionsystemforseaiceapplicationssnowmodellgpartimodeldescription AT stewartjscott lagrangiansnowevolutionsystemforseaiceapplicationssnowmodellgpartimodeldescription AT pedersenstineh lagrangiansnowevolutionsystemforseaiceapplicationssnowmodellgpartimodeldescription AT reinkingadelek lagrangiansnowevolutionsystemforseaiceapplicationssnowmodellgpartimodeldescription AT elderkelly lagrangiansnowevolutionsystemforseaiceapplicationssnowmodellgpartimodeldescription |