Cargando…
Function Space Optimization: A Symbolic Regression Method for Estimating Parameter Transfer Functions for Hydrological Models
Estimating parameters for distributed hydrological models is a challenging and long studied task. Parameter transfer functions, which define model parameters as functions of geophysical properties of a catchment, might improve the calibration procedure, increase process realism, and can enable predi...
Autores principales: | Feigl, M., Herrnegger, M., Klotz, D., Schulz, K. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7583385/ https://www.ncbi.nlm.nih.gov/pubmed/33132450 http://dx.doi.org/10.1029/2020WR027385 |
Ejemplares similares
-
Automatic Regionalization of Model Parameters for Hydrological Models
por: Feigl, Moritz, et al.
Publicado: (2022) -
Random functions and hydrology /
por: Bras, Rafael L.
Publicado: (1993) -
Random functions and hydrology
por: Bras, Rafael L, et al.
Publicado: (1985) -
AI Feynman: A physics-inspired method for symbolic regression
por: Udrescu, Silviu-Marian, et al.
Publicado: (2020) -
Symbolic regression of generative network models
por: Menezes, Telmo, et al.
Publicado: (2014)