Cargando…
Optimizing the Sensor Placement for Foot Plantar Center of Pressure without Prior Knowledge Using Deep Reinforcement Learning
We study the foot plantar sensor placement by a deep reinforcement learning algorithm without using any prior knowledge of the foot anatomical area. To apply a reinforcement learning algorithm, we propose a sensor placement environment and reward system that aims to optimize fitting the center of pr...
Autores principales: | Lin, Cheng-Wu, Ruan, Shanq-Jang, Hsu, Wei-Chun, Tu, Ya-Wen, Han, Shao-Li |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7583741/ https://www.ncbi.nlm.nih.gov/pubmed/33003510 http://dx.doi.org/10.3390/s20195588 |
Ejemplares similares
-
Foot Placement Characteristics and Plantar Pressure Distribution Patterns during Stepping on Ground in Neonates
por: Sylos-Labini, F., et al.
Publicado: (2017) -
Foot Modeling and Smart Plantar Pressure Reconstruction from Three Sensors
por: Ghaida, Hussein Abou, et al.
Publicado: (2014) -
Use of Plantar Pressure Sensors to Take Weight-Bearing Foot Casts
por: Panera-Rico, Enrique, et al.
Publicado: (2021) -
Corrigendum: Foot Placement Characteristics and Plantar Pressure Distribution Patterns during Stepping on Ground in Neonates
por: Sylos-Labini, F., et al.
Publicado: (2017) -
Lower Extremity Muscle Performance and Foot Pressure in Patients Who Have Plantar Fasciitis with and without Flat Foot Posture
por: Lee, Jin Hyuck, et al.
Publicado: (2022)