Cargando…

A Study of Defect Detection Techniques for Metallographic Images

Metallography is the study of the structure of metals and alloys. Metallographic analysis can be regarded as a detection tool to assist in identifying a metal or alloy, to evaluate whether an alloy is processed correctly, to inspect multiple phases within a material, to locate and characterize imper...

Descripción completa

Detalles Bibliográficos
Autores principales: Wu, Wei-Hung, Lee, Jen-Chun, Wang, Yi-Ming
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7583772/
https://www.ncbi.nlm.nih.gov/pubmed/33003553
http://dx.doi.org/10.3390/s20195593
Descripción
Sumario:Metallography is the study of the structure of metals and alloys. Metallographic analysis can be regarded as a detection tool to assist in identifying a metal or alloy, to evaluate whether an alloy is processed correctly, to inspect multiple phases within a material, to locate and characterize imperfections such as voids or impurities, or to find the damaged areas of metallographic images. However, the defect detection of metallography is evaluated by human experts, and its automatic identification is still a challenge in almost every real solution. Deep learning has been applied to different problems in computer vision since the proposal of AlexNet in 2012. In this study, we propose a novel convolutional neural network architecture for metallographic analysis based on a modified residual neural network (ResNet). Multi-scale ResNet (M-ResNet), the modified method, improves efficiency by utilizing multi-scale operations for the accurate detection of objects of various sizes, especially small objects. The experimental results show that the proposed method yields an accuracy of 85.7% (mAP) in recognition performance, which is higher than existing methods. As a consequence, we propose a novel system for automatic defect detection as an application for metallographic analysis.