Cargando…
An Accelerator Design Using a MTCA Decomposition Algorithm for CNNs
Due to the high throughput and high computing capability of convolutional neural networks (CNNs), researchers are paying increasing attention to the design of CNNs hardware accelerator architecture. Accordingly, in this paper, we propose a block parallel computing algorithm based on the matrix trans...
Autores principales: | Zhao, Yunping, Lu, Jianzhuang, Chen, Xiaowen |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7583864/ https://www.ncbi.nlm.nih.gov/pubmed/32998366 http://dx.doi.org/10.3390/s20195558 |
Ejemplares similares
-
Status of mTCA Slow Control development at CMS
por: Volkov, Petr
Publicado: (2015) -
White Rabbit and MTCA.4 Use in the LLRF Upgrade for CERN’s SPS
por: Włostowski, Tomasz, et al.
Publicado: (2022) -
Towards Convolutional Neural Network Acceleration and Compression Based on Simon
k-Means
por: Wei, Mingjie, et al.
Publicado: (2022) -
Performance of a downconverter test-electronics with MTCA-based digitizers for beam position monitoring in 3.9GHz accelerating cavities
por: Wamsat, T, et al.
Publicado: (2012) -
Using Algorithmic Transformations and Sensitivity Analysis to Unleash Approximations in CNNs at the Edge
por: Ponzina, Flavio, et al.
Publicado: (2022)