Cargando…
Scheduling Sensor Duty Cycling Based on Event Detection Using Bi-Directional Long Short-Term Memory and Reinforcement Learning
A smart home provides a facilitated environment for the detection of human activity with appropriate Deep Learning algorithms to manipulate data collected from numerous sensors attached to various smart things in a smart home environment. Human activities comprise expected and unexpected behavior ev...
Autores principales: | Diyan, Muhammad, Khan, Murad, Nathali Silva, Bhagya, Han, Kijun |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7583935/ https://www.ncbi.nlm.nih.gov/pubmed/32992795 http://dx.doi.org/10.3390/s20195498 |
Ejemplares similares
-
A Multi-Objective Approach for Optimal Energy Management in Smart Home Using the Reinforcement Learning
por: Diyan, Muhammad, et al.
Publicado: (2020) -
Load Balancing Integrated Least Slack Time-Based Appliance Scheduling for Smart Home Energy Management
por: Silva, Bhagya Nathali, et al.
Publicado: (2018) -
A Web of Things-Based Emerging Sensor Network Architecture for Smart Control Systems
por: Khan, Murad, et al.
Publicado: (2017) -
Urban Planning and Smart City Decision Management Empowered by Real-Time Data Processing Using Big Data Analytics
por: Silva, Bhagya Nathali, et al.
Publicado: (2018) -
Scheduling in the context of resident duty hour reform
por: Sun, Ning-Zi, et al.
Publicado: (2014)