Cargando…
Contribution of lung function in predicting distance covered in the 6-min walk test in obese Brazilian women
Obesity affects the respiratory system through various mechanisms, including systemic inflammation and direct mechanical hindrance due to fat deposition in the chest and abdomen. In addition, changes in the neural control of respiration and increases in thoracic blood volume can promote abnormalitie...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Associação Brasileira de Divulgação Científica
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7584155/ https://www.ncbi.nlm.nih.gov/pubmed/33111741 http://dx.doi.org/10.1590/1414-431X202010279 |
Sumario: | Obesity affects the respiratory system through various mechanisms, including systemic inflammation and direct mechanical hindrance due to fat deposition in the chest and abdomen. In addition, changes in the neural control of respiration and increases in thoracic blood volume can promote abnormalities in lung function. Thus, determining relationships between the distance covered in the 6-min walk test (6MWT) and demographic and lung function variables may help us better understand the mechanisms involved in reduced functional exercise capacity in obesity. To explore the determinants of the 6-min walking distance (6MWD) and evaluate the influence of lung function on the distance covered, 263 obese Brazilian women performed the 6MWT and underwent spirometry and respiratory muscle strength measurement. The mean age was 41.8±11.1 years. The mean body mass index (BMI) was 45±8 kg/m(2). The 6MWD showed correlations with height (r=0.319), age (r=-0.281), weight (r=-0.370), BMI (r=-0.561), forced vital capacity (FVC, r=0.443), expiratory peak flow (r=0.278), maximal inspiratory pressure (MIP, r=0.326), and maximal expiratory pressure (r=0.259), all with P<0.0001. In the stepwise forward regression analysis, BMI, FVC, age, and MIP were the independent predictive variables for 6MWD, explaining 41% of its variability. The reference equation including lung function was as follows: 6MWD (m) = 513.6 - (4.439 × BMI(kg/m2)) + (1.136 × FVC(%predicted)) - (1.048 × age(yrs)) + (0.544 × MIP(%predicted)). Thus, the inclusion of lung function in a reference equation for 6MWD contributes to a better prediction of the distance covered in this population. |
---|