Cargando…
Orchard layout and plant traits influence fruit yield more strongly than pollinator behaviour and density in a dioecious crop
Mutualistic plant-pollinator interactions are critical for the functioning of both non-managed and agricultural systems. Mathematical models of plant-pollinator interactions can help understand key determinants in pollination success. However, most previous models have not addressed pollinator behav...
Autores principales: | , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7584186/ https://www.ncbi.nlm.nih.gov/pubmed/33095783 http://dx.doi.org/10.1371/journal.pone.0231120 |
_version_ | 1783599544621072384 |
---|---|
author | Peace, Angela Pattemore, David Broussard, Melissa Fonseka, Dilini Tomer, Nathan Bosque-Pérez, Nilsa A. Crowder, David Shaw, Allison K. Jesson, Linley Howlett, Brad G. Jochym, Mateusz Li, Jing |
author_facet | Peace, Angela Pattemore, David Broussard, Melissa Fonseka, Dilini Tomer, Nathan Bosque-Pérez, Nilsa A. Crowder, David Shaw, Allison K. Jesson, Linley Howlett, Brad G. Jochym, Mateusz Li, Jing |
author_sort | Peace, Angela |
collection | PubMed |
description | Mutualistic plant-pollinator interactions are critical for the functioning of both non-managed and agricultural systems. Mathematical models of plant-pollinator interactions can help understand key determinants in pollination success. However, most previous models have not addressed pollinator behavior and plant biology combined. Information generated from such a model can inform optimal design of crop orchards and effective utilization of managed pollinators like western honey bees (Apis mellifera), and help generate hypotheses about the effects of management practices and cultivar selection. We expect that the number of honey bees per flower and male to female flower ratio will influence fruit yield. To test the relative importance of these effects, both singly and simultaneously, we utilized a delay differential equation model combined with Latin hypercube sampling for sensitivity analysis. Empirical data obtained from historical records and collected in kiwifruit (Actinidia chinensis) orchards in New Zealand were used to parameterize the model. We found that, at realistic bee densities, the optimal orchard had 65-75% female flowers, and the most benefit was gained from the first 6-8 bees/1000 flowers, with diminishing returns thereafter. While bee density significantly impacted fruit production, plant-based parameters-flower density and male:female flower ratio-were the most influential. The predictive model provides strategies for improving crop management, such as choosing cultivars which have their peak bloom on the same day, increasing the number of flowers with approximately 70% female flowers in the orchard, and placing enough hives to maintain more than 6 bees per 1000 flowers to optimize yield. |
format | Online Article Text |
id | pubmed-7584186 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-75841862020-10-27 Orchard layout and plant traits influence fruit yield more strongly than pollinator behaviour and density in a dioecious crop Peace, Angela Pattemore, David Broussard, Melissa Fonseka, Dilini Tomer, Nathan Bosque-Pérez, Nilsa A. Crowder, David Shaw, Allison K. Jesson, Linley Howlett, Brad G. Jochym, Mateusz Li, Jing PLoS One Research Article Mutualistic plant-pollinator interactions are critical for the functioning of both non-managed and agricultural systems. Mathematical models of plant-pollinator interactions can help understand key determinants in pollination success. However, most previous models have not addressed pollinator behavior and plant biology combined. Information generated from such a model can inform optimal design of crop orchards and effective utilization of managed pollinators like western honey bees (Apis mellifera), and help generate hypotheses about the effects of management practices and cultivar selection. We expect that the number of honey bees per flower and male to female flower ratio will influence fruit yield. To test the relative importance of these effects, both singly and simultaneously, we utilized a delay differential equation model combined with Latin hypercube sampling for sensitivity analysis. Empirical data obtained from historical records and collected in kiwifruit (Actinidia chinensis) orchards in New Zealand were used to parameterize the model. We found that, at realistic bee densities, the optimal orchard had 65-75% female flowers, and the most benefit was gained from the first 6-8 bees/1000 flowers, with diminishing returns thereafter. While bee density significantly impacted fruit production, plant-based parameters-flower density and male:female flower ratio-were the most influential. The predictive model provides strategies for improving crop management, such as choosing cultivars which have their peak bloom on the same day, increasing the number of flowers with approximately 70% female flowers in the orchard, and placing enough hives to maintain more than 6 bees per 1000 flowers to optimize yield. Public Library of Science 2020-10-23 /pmc/articles/PMC7584186/ /pubmed/33095783 http://dx.doi.org/10.1371/journal.pone.0231120 Text en © 2020 Peace et al http://creativecommons.org/licenses/by/4.0/ This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. |
spellingShingle | Research Article Peace, Angela Pattemore, David Broussard, Melissa Fonseka, Dilini Tomer, Nathan Bosque-Pérez, Nilsa A. Crowder, David Shaw, Allison K. Jesson, Linley Howlett, Brad G. Jochym, Mateusz Li, Jing Orchard layout and plant traits influence fruit yield more strongly than pollinator behaviour and density in a dioecious crop |
title | Orchard layout and plant traits influence fruit yield more strongly than pollinator behaviour and density in a dioecious crop |
title_full | Orchard layout and plant traits influence fruit yield more strongly than pollinator behaviour and density in a dioecious crop |
title_fullStr | Orchard layout and plant traits influence fruit yield more strongly than pollinator behaviour and density in a dioecious crop |
title_full_unstemmed | Orchard layout and plant traits influence fruit yield more strongly than pollinator behaviour and density in a dioecious crop |
title_short | Orchard layout and plant traits influence fruit yield more strongly than pollinator behaviour and density in a dioecious crop |
title_sort | orchard layout and plant traits influence fruit yield more strongly than pollinator behaviour and density in a dioecious crop |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7584186/ https://www.ncbi.nlm.nih.gov/pubmed/33095783 http://dx.doi.org/10.1371/journal.pone.0231120 |
work_keys_str_mv | AT peaceangela orchardlayoutandplanttraitsinfluencefruityieldmorestronglythanpollinatorbehaviouranddensityinadioeciouscrop AT pattemoredavid orchardlayoutandplanttraitsinfluencefruityieldmorestronglythanpollinatorbehaviouranddensityinadioeciouscrop AT broussardmelissa orchardlayoutandplanttraitsinfluencefruityieldmorestronglythanpollinatorbehaviouranddensityinadioeciouscrop AT fonsekadilini orchardlayoutandplanttraitsinfluencefruityieldmorestronglythanpollinatorbehaviouranddensityinadioeciouscrop AT tomernathan orchardlayoutandplanttraitsinfluencefruityieldmorestronglythanpollinatorbehaviouranddensityinadioeciouscrop AT bosquepereznilsaa orchardlayoutandplanttraitsinfluencefruityieldmorestronglythanpollinatorbehaviouranddensityinadioeciouscrop AT crowderdavid orchardlayoutandplanttraitsinfluencefruityieldmorestronglythanpollinatorbehaviouranddensityinadioeciouscrop AT shawallisonk orchardlayoutandplanttraitsinfluencefruityieldmorestronglythanpollinatorbehaviouranddensityinadioeciouscrop AT jessonlinley orchardlayoutandplanttraitsinfluencefruityieldmorestronglythanpollinatorbehaviouranddensityinadioeciouscrop AT howlettbradg orchardlayoutandplanttraitsinfluencefruityieldmorestronglythanpollinatorbehaviouranddensityinadioeciouscrop AT jochymmateusz orchardlayoutandplanttraitsinfluencefruityieldmorestronglythanpollinatorbehaviouranddensityinadioeciouscrop AT lijing orchardlayoutandplanttraitsinfluencefruityieldmorestronglythanpollinatorbehaviouranddensityinadioeciouscrop |