Cargando…

Immediate and transgenerational effects of thymol supplementation, inactivated Salmonella and chronic heat stress on representative immune variables of Japanese quail

Environmental challenges are integrated in the inmunoneuroendocrine interplay, impacting the immune system of the challenged individuals, and potentially implying transgenerational effects on their offspring. This study addressed whether dietary supplementation with thymol can modulate the immune re...

Descripción completa

Detalles Bibliográficos
Autores principales: Videla, E. A., Giayetto, O., Fernández, M. E., Chacana, P. A., Marín, R. H., Nazar, F. N.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7584634/
https://www.ncbi.nlm.nih.gov/pubmed/33097768
http://dx.doi.org/10.1038/s41598-020-74547-2
Descripción
Sumario:Environmental challenges are integrated in the inmunoneuroendocrine interplay, impacting the immune system of the challenged individuals, and potentially implying transgenerational effects on their offspring. This study addressed whether dietary supplementation with thymol can modulate the immune response of adult Japanese quail when simultaneously exposed to an inoculum of inactivated Salmonella Enteritidis and a chronic heat stress (CHS). We also evaluated whether the experienced situations by adults can affect the immune response of their undisturbed offspring. In the parental generation, supplemented quail exposed to CHS had a higher inflammatory response and similar values of the heterophil/lymphocyte (H/L) ratio than those that were not supplemented. In their offspring, those chicks whose parents were exposed to CHS showed higher inflammatory response and lower antibody production. Regarding the H/L ratio, chicks whose parents were supplemented showed lower H/L ratio values. Dietary supplementation with thymol partially and positively modulated the inflammatory response and avoided H/L ratio alteration in the parental generation exposed to high environmental temperatures, suggesting these adults were better at dealing with the challenge. The lower H/L ratio values in the offspring suggests that chicks are more capable to deal with potential stressful situations associated with conventional breeding conditions.