Cargando…

Mesoscale structures in amorphous silks from a spider’s orb-web

Of the 7–8 silk fibers making up an orb-web only the hierarchical structural organization of semicrystalline radial fibers -composed of major ampullate silk- has been studied in detail, given its fascinating mechanical features. While major ampullate silk’s nanofibrillar morphology is well establish...

Descripción completa

Detalles Bibliográficos
Autores principales: Riekel, Christian, Burghammer, Manfred, Rosenthal, Martin
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7584646/
https://www.ncbi.nlm.nih.gov/pubmed/33097740
http://dx.doi.org/10.1038/s41598-020-74638-0
Descripción
Sumario:Of the 7–8 silk fibers making up an orb-web only the hierarchical structural organization of semicrystalline radial fibers -composed of major ampullate silk- has been studied in detail, given its fascinating mechanical features. While major ampullate silk’s nanofibrillar morphology is well established, knowhow on mesoscale (> 50–100 nm) assembly and its contribution to mechanical performance is limited. Much less is known on the hierarchical structural organization of other, generally less crystalline fibers contributing to an orb-webs’ function. Here we show by scanning X-ray micro&nanodiffraction that two fully amorphous, fine silk fibers from the center of an orb-web have different mesoscale features. One of the fibers has a fibrillar composite structure resembling stiff egg case silk. The other fiber has a skin–core structure based on a nanofibrillar ribbon wound around a disordered core. A fraction of nanofibrils appears to have assembled into mesoscale fibrils. This fiber becomes readily attached to the coat of major ampullate silk fibers. We observe that a detached fiber has ripped out the glycoprotein skin-layer containing polyglycine II nanocrystallites. The anchoring of the fiber in the coat suggests that it could serve for strengthening the tension and cohesion of major ampullate silk fibers.