Cargando…
Revisiting particle dry deposition and its role in radiative effect estimates
Wet and dry deposition remove aerosols from the atmosphere, and these processes control aerosol lifetime and thus impact climate and air quality. Dry deposition is a significant source of aerosol uncertainty in global chemical transport and climate models. Dry deposition parameterizations in most gl...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
National Academy of Sciences
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7585004/ https://www.ncbi.nlm.nih.gov/pubmed/33020302 http://dx.doi.org/10.1073/pnas.2014761117 |
_version_ | 1783599700625063936 |
---|---|
author | Emerson, Ethan W. Hodshire, Anna L. DeBolt, Holly M. Bilsback, Kelsey R. Pierce, Jeffrey R. McMeeking, Gavin R. Farmer, Delphine K. |
author_facet | Emerson, Ethan W. Hodshire, Anna L. DeBolt, Holly M. Bilsback, Kelsey R. Pierce, Jeffrey R. McMeeking, Gavin R. Farmer, Delphine K. |
author_sort | Emerson, Ethan W. |
collection | PubMed |
description | Wet and dry deposition remove aerosols from the atmosphere, and these processes control aerosol lifetime and thus impact climate and air quality. Dry deposition is a significant source of aerosol uncertainty in global chemical transport and climate models. Dry deposition parameterizations in most global models were developed when few particle deposition measurements were available. However, new measurement techniques have enabled more size-resolved particle flux observations. We combined literature measurements with data that we collected over a grassland in Oklahoma and a pine forest in Colorado to develop a dry deposition parameterization. We find that relative to observations, previous parameterizations overestimated deposition of the accumulation and Aitken mode particles, and underestimated in the coarse mode. These systematic differences in observed and modeled accumulation mode particle deposition velocities are as large as an order of magnitude over terrestrial ecosystems. As accumulation mode particles form most of the cloud condensation nuclei (CCN) that influence the indirect radiative effect, this model-measurement discrepancy in dry deposition alters modeled CCN and radiative forcing. We present a revised observationally driven parameterization for regional and global aerosol models. Using this revised dry deposition scheme in the Goddard Earth Observing System (GEOS)-Chem chemical transport model, we find that global surface accumulation-mode number concentrations increase by 62% and enhance the global combined anthropogenic and natural aerosol indirect effect by −0.63 W m(−2). Our observationally constrained approach should reduce the uncertainty of particle dry deposition in global chemical transport models. |
format | Online Article Text |
id | pubmed-7585004 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | National Academy of Sciences |
record_format | MEDLINE/PubMed |
spelling | pubmed-75850042020-10-30 Revisiting particle dry deposition and its role in radiative effect estimates Emerson, Ethan W. Hodshire, Anna L. DeBolt, Holly M. Bilsback, Kelsey R. Pierce, Jeffrey R. McMeeking, Gavin R. Farmer, Delphine K. Proc Natl Acad Sci U S A Physical Sciences Wet and dry deposition remove aerosols from the atmosphere, and these processes control aerosol lifetime and thus impact climate and air quality. Dry deposition is a significant source of aerosol uncertainty in global chemical transport and climate models. Dry deposition parameterizations in most global models were developed when few particle deposition measurements were available. However, new measurement techniques have enabled more size-resolved particle flux observations. We combined literature measurements with data that we collected over a grassland in Oklahoma and a pine forest in Colorado to develop a dry deposition parameterization. We find that relative to observations, previous parameterizations overestimated deposition of the accumulation and Aitken mode particles, and underestimated in the coarse mode. These systematic differences in observed and modeled accumulation mode particle deposition velocities are as large as an order of magnitude over terrestrial ecosystems. As accumulation mode particles form most of the cloud condensation nuclei (CCN) that influence the indirect radiative effect, this model-measurement discrepancy in dry deposition alters modeled CCN and radiative forcing. We present a revised observationally driven parameterization for regional and global aerosol models. Using this revised dry deposition scheme in the Goddard Earth Observing System (GEOS)-Chem chemical transport model, we find that global surface accumulation-mode number concentrations increase by 62% and enhance the global combined anthropogenic and natural aerosol indirect effect by −0.63 W m(−2). Our observationally constrained approach should reduce the uncertainty of particle dry deposition in global chemical transport models. National Academy of Sciences 2020-10-20 2020-10-05 /pmc/articles/PMC7585004/ /pubmed/33020302 http://dx.doi.org/10.1073/pnas.2014761117 Text en Copyright © 2020 the Author(s). Published by PNAS. https://creativecommons.org/licenses/by-nc-nd/4.0/ https://creativecommons.org/licenses/by-nc-nd/4.0/This open access article is distributed under Creative Commons Attribution-NonCommercial-NoDerivatives License 4.0 (CC BY-NC-ND) (https://creativecommons.org/licenses/by-nc-nd/4.0/) . |
spellingShingle | Physical Sciences Emerson, Ethan W. Hodshire, Anna L. DeBolt, Holly M. Bilsback, Kelsey R. Pierce, Jeffrey R. McMeeking, Gavin R. Farmer, Delphine K. Revisiting particle dry deposition and its role in radiative effect estimates |
title | Revisiting particle dry deposition and its role in radiative effect estimates |
title_full | Revisiting particle dry deposition and its role in radiative effect estimates |
title_fullStr | Revisiting particle dry deposition and its role in radiative effect estimates |
title_full_unstemmed | Revisiting particle dry deposition and its role in radiative effect estimates |
title_short | Revisiting particle dry deposition and its role in radiative effect estimates |
title_sort | revisiting particle dry deposition and its role in radiative effect estimates |
topic | Physical Sciences |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7585004/ https://www.ncbi.nlm.nih.gov/pubmed/33020302 http://dx.doi.org/10.1073/pnas.2014761117 |
work_keys_str_mv | AT emersonethanw revisitingparticledrydepositionanditsroleinradiativeeffectestimates AT hodshireannal revisitingparticledrydepositionanditsroleinradiativeeffectestimates AT debolthollym revisitingparticledrydepositionanditsroleinradiativeeffectestimates AT bilsbackkelseyr revisitingparticledrydepositionanditsroleinradiativeeffectestimates AT piercejeffreyr revisitingparticledrydepositionanditsroleinradiativeeffectestimates AT mcmeekinggavinr revisitingparticledrydepositionanditsroleinradiativeeffectestimates AT farmerdelphinek revisitingparticledrydepositionanditsroleinradiativeeffectestimates |