Cargando…
Dynamic evolution of great ape Y chromosomes
The mammalian male-specific Y chromosome plays a critical role in sex determination and male fertility. However, because of its repetitive and haploid nature, it is frequently absent from genome assemblies and remains enigmatic. The Y chromosomes of great apes represent a particular puzzle: their ge...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
National Academy of Sciences
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7585023/ https://www.ncbi.nlm.nih.gov/pubmed/33020265 http://dx.doi.org/10.1073/pnas.2001749117 |
_version_ | 1783599701774303232 |
---|---|
author | Cechova, Monika Vegesna, Rahulsimham Tomaszkiewicz, Marta Harris, Robert S. Chen, Di Rangavittal, Samarth Medvedev, Paul Makova, Kateryna D. |
author_facet | Cechova, Monika Vegesna, Rahulsimham Tomaszkiewicz, Marta Harris, Robert S. Chen, Di Rangavittal, Samarth Medvedev, Paul Makova, Kateryna D. |
author_sort | Cechova, Monika |
collection | PubMed |
description | The mammalian male-specific Y chromosome plays a critical role in sex determination and male fertility. However, because of its repetitive and haploid nature, it is frequently absent from genome assemblies and remains enigmatic. The Y chromosomes of great apes represent a particular puzzle: their gene content is more similar between human and gorilla than between human and chimpanzee, even though human and chimpanzee share a more recent common ancestor. To solve this puzzle, here we constructed a dataset including Ys from all extant great ape genera. We generated assemblies of bonobo and orangutan Ys from short and long sequencing reads and aligned them with the publicly available human, chimpanzee, and gorilla Y assemblies. Analyzing this dataset, we found that the genus Pan, which includes chimpanzee and bonobo, experienced accelerated substitution rates. Pan also exhibited elevated gene death rates. These observations are consistent with high levels of sperm competition in Pan. Furthermore, we inferred that the great ape common ancestor already possessed multicopy sequences homologous to most human and chimpanzee palindromes. Nonetheless, each species also acquired distinct ampliconic sequences. We also detected increased chromatin contacts between and within palindromes (from Hi-C data), likely facilitating gene conversion and structural rearrangements. Our results highlight the dynamic mode of Y chromosome evolution and open avenues for studies of male-specific dispersal in endangered great ape species. |
format | Online Article Text |
id | pubmed-7585023 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | National Academy of Sciences |
record_format | MEDLINE/PubMed |
spelling | pubmed-75850232020-10-30 Dynamic evolution of great ape Y chromosomes Cechova, Monika Vegesna, Rahulsimham Tomaszkiewicz, Marta Harris, Robert S. Chen, Di Rangavittal, Samarth Medvedev, Paul Makova, Kateryna D. Proc Natl Acad Sci U S A Biological Sciences The mammalian male-specific Y chromosome plays a critical role in sex determination and male fertility. However, because of its repetitive and haploid nature, it is frequently absent from genome assemblies and remains enigmatic. The Y chromosomes of great apes represent a particular puzzle: their gene content is more similar between human and gorilla than between human and chimpanzee, even though human and chimpanzee share a more recent common ancestor. To solve this puzzle, here we constructed a dataset including Ys from all extant great ape genera. We generated assemblies of bonobo and orangutan Ys from short and long sequencing reads and aligned them with the publicly available human, chimpanzee, and gorilla Y assemblies. Analyzing this dataset, we found that the genus Pan, which includes chimpanzee and bonobo, experienced accelerated substitution rates. Pan also exhibited elevated gene death rates. These observations are consistent with high levels of sperm competition in Pan. Furthermore, we inferred that the great ape common ancestor already possessed multicopy sequences homologous to most human and chimpanzee palindromes. Nonetheless, each species also acquired distinct ampliconic sequences. We also detected increased chromatin contacts between and within palindromes (from Hi-C data), likely facilitating gene conversion and structural rearrangements. Our results highlight the dynamic mode of Y chromosome evolution and open avenues for studies of male-specific dispersal in endangered great ape species. National Academy of Sciences 2020-10-20 2020-10-05 /pmc/articles/PMC7585023/ /pubmed/33020265 http://dx.doi.org/10.1073/pnas.2001749117 Text en Copyright © 2020 the Author(s). Published by PNAS. https://creativecommons.org/licenses/by-nc-nd/4.0/ https://creativecommons.org/licenses/by-nc-nd/4.0/This open access article is distributed under Creative Commons Attribution-NonCommercial-NoDerivatives License 4.0 (CC BY-NC-ND) (https://creativecommons.org/licenses/by-nc-nd/4.0/) . |
spellingShingle | Biological Sciences Cechova, Monika Vegesna, Rahulsimham Tomaszkiewicz, Marta Harris, Robert S. Chen, Di Rangavittal, Samarth Medvedev, Paul Makova, Kateryna D. Dynamic evolution of great ape Y chromosomes |
title | Dynamic evolution of great ape Y chromosomes |
title_full | Dynamic evolution of great ape Y chromosomes |
title_fullStr | Dynamic evolution of great ape Y chromosomes |
title_full_unstemmed | Dynamic evolution of great ape Y chromosomes |
title_short | Dynamic evolution of great ape Y chromosomes |
title_sort | dynamic evolution of great ape y chromosomes |
topic | Biological Sciences |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7585023/ https://www.ncbi.nlm.nih.gov/pubmed/33020265 http://dx.doi.org/10.1073/pnas.2001749117 |
work_keys_str_mv | AT cechovamonika dynamicevolutionofgreatapeychromosomes AT vegesnarahulsimham dynamicevolutionofgreatapeychromosomes AT tomaszkiewiczmarta dynamicevolutionofgreatapeychromosomes AT harrisroberts dynamicevolutionofgreatapeychromosomes AT chendi dynamicevolutionofgreatapeychromosomes AT rangavittalsamarth dynamicevolutionofgreatapeychromosomes AT medvedevpaul dynamicevolutionofgreatapeychromosomes AT makovakaterynad dynamicevolutionofgreatapeychromosomes |