Cargando…

GPA peptide inhibits NLRP3 inflammasome activation to ameliorate colitis through AMPK pathway

Ulcerative colitis (UC) is a chronic and idiopathic inflammatory disease that affects the colon, resulting in immune dysregulation and the production of large amounts of pro-inflammatory cytokines. Pyroptosis and NLRP3 inflammasome are associated with various kinds of inflammatory diseases including...

Descripción completa

Detalles Bibliográficos
Autores principales: Deng, Zhao, Ni, Jiangjin, Wu, Xiaoyu, Wei, Hongkui, Peng, Jian
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Impact Journals 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7585118/
https://www.ncbi.nlm.nih.gov/pubmed/32950971
http://dx.doi.org/10.18632/aging.103825
Descripción
Sumario:Ulcerative colitis (UC) is a chronic and idiopathic inflammatory disease that affects the colon, resulting in immune dysregulation and the production of large amounts of pro-inflammatory cytokines. Pyroptosis and NLRP3 inflammasome are associated with various kinds of inflammatory diseases including colitis. The purpose of this study is to investigate the protective effects and regulatory mechanism of Gly-Pro-Ala (GPA) peptide on DSS-induced colitis. In vivo, we find GPA peptide could exert anti-inflammatory effects on DSS-induced mice colitis, and its anti-inflammatory effects are abolished in NLRP3(-/-) mice. In macrophage, GPA suppresses the assembly of NLRP3 inflammasome and GSDMD cleavage. Furthermore, GPA maintains mitochondrial homeostasis through inhibiting ROS, mtDNA and NLRP3 mitochondrial localization, with other signals related to NLRP3 inflammasome unaffected. Furthermore, the inhibitory effects of GPA on reactive oxygen species (ROS) are found to be achieved by increasing AMPK phosphorylation. Our results suggest that GPA inhibits NLRP3 inflammasome activation through increasing AMPK phosphorylation to suppress ROS, and can be applied in the prevention of colitis through targeting NLRP3.