Cargando…
A rank-based marker selection method for high throughput scRNA-seq data
BACKGROUND: High throughput microfluidic protocols in single cell RNA sequencing (scRNA-seq) collect mRNA counts from up to one million individual cells in a single experiment; this enables high resolution studies of rare cell types and cell development pathways. Determining small sets of genetic ma...
Autores principales: | Vargo, Alexander H. S., Gilbert, Anna C. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7585212/ https://www.ncbi.nlm.nih.gov/pubmed/33097004 http://dx.doi.org/10.1186/s12859-020-03641-z |
Ejemplares similares
-
An efficient scRNA-seq dropout imputation method using graph attention network
por: Xu, Chenyang, et al.
Publicado: (2021) -
Using DenseFly algorithm for cell searching on massive scRNA-seq datasets
por: Chen, Yixin, et al.
Publicado: (2020) -
SCC: an accurate imputation method for scRNA-seq dropouts based on a mixture model
por: Zheng, Yan, et al.
Publicado: (2021) -
SCReadCounts: estimation of cell-level SNVs expression from scRNA-seq data
por: Prashant, N. M., et al.
Publicado: (2021) -
Modeling expression ranks for noise-tolerant differential expression analysis of scRNA-seq data
por: Gupta, Krishan, et al.
Publicado: (2021)