Cargando…
Detection and stage classification of Plasmodium falciparum from images of Giemsa stained thin blood films using random forest classifiers
BACKGROUND: The conventional method for the diagnosis of malaria parasites is the microscopic examination of stained blood films, which is time consuming and requires expertise. We introduce computer-based image segmentation and life stage classification with a random forest classifier. Segmentation...
Autores principales: | Abbas, Syed Saiden, Dijkstra, Tjeerd M. H. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7585298/ https://www.ncbi.nlm.nih.gov/pubmed/33097073 http://dx.doi.org/10.1186/s13000-020-01040-9 |
Ejemplares similares
-
Automated segmentation of blood cells in Giemsa stained digitized thin blood films
por: Walliander, Margarita, et al.
Publicado: (2013) -
A novel semi-automatic image processing approach to determine Plasmodium falciparum parasitemia in Giemsa-stained thin blood smears
por: Le, Minh-Tam, et al.
Publicado: (2008) -
A comparative study of cell classifiers for image-based high-throughput screening
por: Abbas, Syed Saiden, et al.
Publicado: (2014) -
Investigation of a novel approach to scoring Giemsa-stained malaria-infected thin blood films
por: Proudfoot, Owen, et al.
Publicado: (2008) -
Comparison of Modified Ultrafast Giemsa Stain with the Standard May Grunwald Giemsa Stain in FNAC of Various Organs
por: Deepthi, B., et al.
Publicado: (2022)