Cargando…

Triboelectric nanogenerator sensors for soft robotics aiming at digital twin applications

Designing efficient sensors for soft robotics aiming at human machine interaction remains a challenge. Here, we report a smart soft-robotic gripper system based on triboelectric nanogenerator sensors to capture the continuous motion and tactile information for soft gripper. With the special distribu...

Descripción completa

Detalles Bibliográficos
Autores principales: Jin, Tao, Sun, Zhongda, Li, Long, Zhang, Quan, Zhu, Minglu, Zhang, Zixuan, Yuan, Guangjie, Chen, Tao, Tian, Yingzhong, Hou, Xuyan, Lee, Chengkuo
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7585441/
https://www.ncbi.nlm.nih.gov/pubmed/33097696
http://dx.doi.org/10.1038/s41467-020-19059-3
_version_ 1783599791619440640
author Jin, Tao
Sun, Zhongda
Li, Long
Zhang, Quan
Zhu, Minglu
Zhang, Zixuan
Yuan, Guangjie
Chen, Tao
Tian, Yingzhong
Hou, Xuyan
Lee, Chengkuo
author_facet Jin, Tao
Sun, Zhongda
Li, Long
Zhang, Quan
Zhu, Minglu
Zhang, Zixuan
Yuan, Guangjie
Chen, Tao
Tian, Yingzhong
Hou, Xuyan
Lee, Chengkuo
author_sort Jin, Tao
collection PubMed
description Designing efficient sensors for soft robotics aiming at human machine interaction remains a challenge. Here, we report a smart soft-robotic gripper system based on triboelectric nanogenerator sensors to capture the continuous motion and tactile information for soft gripper. With the special distributed electrodes, the tactile sensor can perceive the contact position and area of external stimuli. The gear-based length sensor with a stretchable strip allows the continuous detection of elongation via the sequential contact of each tooth. The triboelectric sensory information collected during the operation of soft gripper is further trained by support vector machine algorithm to identify diverse objects with an accuracy of 98.1%. Demonstration of digital twin applications, which show the object identification and duplicate robotic manipulation in virtual environment according to the real-time operation of the soft-robotic gripper system, is successfully created for virtual assembly lines and unmanned warehouse applications.
format Online
Article
Text
id pubmed-7585441
institution National Center for Biotechnology Information
language English
publishDate 2020
publisher Nature Publishing Group UK
record_format MEDLINE/PubMed
spelling pubmed-75854412020-10-29 Triboelectric nanogenerator sensors for soft robotics aiming at digital twin applications Jin, Tao Sun, Zhongda Li, Long Zhang, Quan Zhu, Minglu Zhang, Zixuan Yuan, Guangjie Chen, Tao Tian, Yingzhong Hou, Xuyan Lee, Chengkuo Nat Commun Article Designing efficient sensors for soft robotics aiming at human machine interaction remains a challenge. Here, we report a smart soft-robotic gripper system based on triboelectric nanogenerator sensors to capture the continuous motion and tactile information for soft gripper. With the special distributed electrodes, the tactile sensor can perceive the contact position and area of external stimuli. The gear-based length sensor with a stretchable strip allows the continuous detection of elongation via the sequential contact of each tooth. The triboelectric sensory information collected during the operation of soft gripper is further trained by support vector machine algorithm to identify diverse objects with an accuracy of 98.1%. Demonstration of digital twin applications, which show the object identification and duplicate robotic manipulation in virtual environment according to the real-time operation of the soft-robotic gripper system, is successfully created for virtual assembly lines and unmanned warehouse applications. Nature Publishing Group UK 2020-10-23 /pmc/articles/PMC7585441/ /pubmed/33097696 http://dx.doi.org/10.1038/s41467-020-19059-3 Text en © The Author(s) 2020 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
spellingShingle Article
Jin, Tao
Sun, Zhongda
Li, Long
Zhang, Quan
Zhu, Minglu
Zhang, Zixuan
Yuan, Guangjie
Chen, Tao
Tian, Yingzhong
Hou, Xuyan
Lee, Chengkuo
Triboelectric nanogenerator sensors for soft robotics aiming at digital twin applications
title Triboelectric nanogenerator sensors for soft robotics aiming at digital twin applications
title_full Triboelectric nanogenerator sensors for soft robotics aiming at digital twin applications
title_fullStr Triboelectric nanogenerator sensors for soft robotics aiming at digital twin applications
title_full_unstemmed Triboelectric nanogenerator sensors for soft robotics aiming at digital twin applications
title_short Triboelectric nanogenerator sensors for soft robotics aiming at digital twin applications
title_sort triboelectric nanogenerator sensors for soft robotics aiming at digital twin applications
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7585441/
https://www.ncbi.nlm.nih.gov/pubmed/33097696
http://dx.doi.org/10.1038/s41467-020-19059-3
work_keys_str_mv AT jintao triboelectricnanogeneratorsensorsforsoftroboticsaimingatdigitaltwinapplications
AT sunzhongda triboelectricnanogeneratorsensorsforsoftroboticsaimingatdigitaltwinapplications
AT lilong triboelectricnanogeneratorsensorsforsoftroboticsaimingatdigitaltwinapplications
AT zhangquan triboelectricnanogeneratorsensorsforsoftroboticsaimingatdigitaltwinapplications
AT zhuminglu triboelectricnanogeneratorsensorsforsoftroboticsaimingatdigitaltwinapplications
AT zhangzixuan triboelectricnanogeneratorsensorsforsoftroboticsaimingatdigitaltwinapplications
AT yuanguangjie triboelectricnanogeneratorsensorsforsoftroboticsaimingatdigitaltwinapplications
AT chentao triboelectricnanogeneratorsensorsforsoftroboticsaimingatdigitaltwinapplications
AT tianyingzhong triboelectricnanogeneratorsensorsforsoftroboticsaimingatdigitaltwinapplications
AT houxuyan triboelectricnanogeneratorsensorsforsoftroboticsaimingatdigitaltwinapplications
AT leechengkuo triboelectricnanogeneratorsensorsforsoftroboticsaimingatdigitaltwinapplications