Cargando…
Triboelectric nanogenerator sensors for soft robotics aiming at digital twin applications
Designing efficient sensors for soft robotics aiming at human machine interaction remains a challenge. Here, we report a smart soft-robotic gripper system based on triboelectric nanogenerator sensors to capture the continuous motion and tactile information for soft gripper. With the special distribu...
Autores principales: | , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7585441/ https://www.ncbi.nlm.nih.gov/pubmed/33097696 http://dx.doi.org/10.1038/s41467-020-19059-3 |
_version_ | 1783599791619440640 |
---|---|
author | Jin, Tao Sun, Zhongda Li, Long Zhang, Quan Zhu, Minglu Zhang, Zixuan Yuan, Guangjie Chen, Tao Tian, Yingzhong Hou, Xuyan Lee, Chengkuo |
author_facet | Jin, Tao Sun, Zhongda Li, Long Zhang, Quan Zhu, Minglu Zhang, Zixuan Yuan, Guangjie Chen, Tao Tian, Yingzhong Hou, Xuyan Lee, Chengkuo |
author_sort | Jin, Tao |
collection | PubMed |
description | Designing efficient sensors for soft robotics aiming at human machine interaction remains a challenge. Here, we report a smart soft-robotic gripper system based on triboelectric nanogenerator sensors to capture the continuous motion and tactile information for soft gripper. With the special distributed electrodes, the tactile sensor can perceive the contact position and area of external stimuli. The gear-based length sensor with a stretchable strip allows the continuous detection of elongation via the sequential contact of each tooth. The triboelectric sensory information collected during the operation of soft gripper is further trained by support vector machine algorithm to identify diverse objects with an accuracy of 98.1%. Demonstration of digital twin applications, which show the object identification and duplicate robotic manipulation in virtual environment according to the real-time operation of the soft-robotic gripper system, is successfully created for virtual assembly lines and unmanned warehouse applications. |
format | Online Article Text |
id | pubmed-7585441 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | Nature Publishing Group UK |
record_format | MEDLINE/PubMed |
spelling | pubmed-75854412020-10-29 Triboelectric nanogenerator sensors for soft robotics aiming at digital twin applications Jin, Tao Sun, Zhongda Li, Long Zhang, Quan Zhu, Minglu Zhang, Zixuan Yuan, Guangjie Chen, Tao Tian, Yingzhong Hou, Xuyan Lee, Chengkuo Nat Commun Article Designing efficient sensors for soft robotics aiming at human machine interaction remains a challenge. Here, we report a smart soft-robotic gripper system based on triboelectric nanogenerator sensors to capture the continuous motion and tactile information for soft gripper. With the special distributed electrodes, the tactile sensor can perceive the contact position and area of external stimuli. The gear-based length sensor with a stretchable strip allows the continuous detection of elongation via the sequential contact of each tooth. The triboelectric sensory information collected during the operation of soft gripper is further trained by support vector machine algorithm to identify diverse objects with an accuracy of 98.1%. Demonstration of digital twin applications, which show the object identification and duplicate robotic manipulation in virtual environment according to the real-time operation of the soft-robotic gripper system, is successfully created for virtual assembly lines and unmanned warehouse applications. Nature Publishing Group UK 2020-10-23 /pmc/articles/PMC7585441/ /pubmed/33097696 http://dx.doi.org/10.1038/s41467-020-19059-3 Text en © The Author(s) 2020 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/. |
spellingShingle | Article Jin, Tao Sun, Zhongda Li, Long Zhang, Quan Zhu, Minglu Zhang, Zixuan Yuan, Guangjie Chen, Tao Tian, Yingzhong Hou, Xuyan Lee, Chengkuo Triboelectric nanogenerator sensors for soft robotics aiming at digital twin applications |
title | Triboelectric nanogenerator sensors for soft robotics aiming at digital twin applications |
title_full | Triboelectric nanogenerator sensors for soft robotics aiming at digital twin applications |
title_fullStr | Triboelectric nanogenerator sensors for soft robotics aiming at digital twin applications |
title_full_unstemmed | Triboelectric nanogenerator sensors for soft robotics aiming at digital twin applications |
title_short | Triboelectric nanogenerator sensors for soft robotics aiming at digital twin applications |
title_sort | triboelectric nanogenerator sensors for soft robotics aiming at digital twin applications |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7585441/ https://www.ncbi.nlm.nih.gov/pubmed/33097696 http://dx.doi.org/10.1038/s41467-020-19059-3 |
work_keys_str_mv | AT jintao triboelectricnanogeneratorsensorsforsoftroboticsaimingatdigitaltwinapplications AT sunzhongda triboelectricnanogeneratorsensorsforsoftroboticsaimingatdigitaltwinapplications AT lilong triboelectricnanogeneratorsensorsforsoftroboticsaimingatdigitaltwinapplications AT zhangquan triboelectricnanogeneratorsensorsforsoftroboticsaimingatdigitaltwinapplications AT zhuminglu triboelectricnanogeneratorsensorsforsoftroboticsaimingatdigitaltwinapplications AT zhangzixuan triboelectricnanogeneratorsensorsforsoftroboticsaimingatdigitaltwinapplications AT yuanguangjie triboelectricnanogeneratorsensorsforsoftroboticsaimingatdigitaltwinapplications AT chentao triboelectricnanogeneratorsensorsforsoftroboticsaimingatdigitaltwinapplications AT tianyingzhong triboelectricnanogeneratorsensorsforsoftroboticsaimingatdigitaltwinapplications AT houxuyan triboelectricnanogeneratorsensorsforsoftroboticsaimingatdigitaltwinapplications AT leechengkuo triboelectricnanogeneratorsensorsforsoftroboticsaimingatdigitaltwinapplications |