Cargando…
Intact vitamin A transport is critical for cold-mediated adipose tissue browning and thermogenesis
OBJECTIVE: Transformation of white into brown fat (“browning”) reduces obesity in many preclinical models and holds great promise as a therapeutic concept in metabolic disease. Vitamin A metabolites (retinoids) have been linked to thermogenic programming of adipose tissue; however, the physiologic i...
Autores principales: | , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7585949/ https://www.ncbi.nlm.nih.gov/pubmed/32992038 http://dx.doi.org/10.1016/j.molmet.2020.101088 |
Sumario: | OBJECTIVE: Transformation of white into brown fat (“browning”) reduces obesity in many preclinical models and holds great promise as a therapeutic concept in metabolic disease. Vitamin A metabolites (retinoids) have been linked to thermogenic programming of adipose tissue; however, the physiologic importance of systemic retinoid transport for adipose tissue browning and adaptive thermogenesis is unknown. METHODS: We performed cold exposure studies in mice and humans and used a genetic model of defective vitamin A transport, the retinol binding protein deficient (Rbp(−/-)) mouse, to study the effects of cooling on systemic vitamin A and the relevance of intact retinoid transport on cold-induced adipose tissue browning. RESULTS: We show that cold stimulation in mice and humans leads to an increase in circulating retinol and its plasma transporter, Rbp. In Rbp(−/-) mice, thermogenic programming of adipocytes and oxidative mitochondrial function are dramatically impaired in subcutaneous white fat, which renders Rbp(−/-) mice more cold-sensitive. In contrast, retinol stimulation in primary human adipocytes promotes thermogenic gene expression and mitochondrial respiration. In humans, cold-mediated retinol increase is associated with a shift in oxidative substrate metabolism suggestive of higher lipid utilisation. CONCLUSIONS: Systemic vitamin A levels are regulated by cold exposure in mice and humans, and intact retinoid transport is essential for cold-induced adipose tissue browning and adaptive thermogenesis. |
---|