Cargando…
Uncovering High-dimensional Structures of Projections from Dimensionality Reduction Methods
Projections are conventional methods of dimensionality reduction for information visualization used to transform high-dimensional data into low dimensional space. If the projection method restricts the output space to two dimensions, the result is a scatter plot. The goal of this scatter plot is to...
Autores principales: | Thrun, Michael C., Ultsch, Alfred |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7586139/ https://www.ncbi.nlm.nih.gov/pubmed/33134096 http://dx.doi.org/10.1016/j.mex.2020.101093 |
Ejemplares similares
-
Dimensionality reduction methods for extracting functional networks from large‐scale CRISPR screens
por: Hassan, Arshia Zernab, et al.
Publicado: (2023) -
Analyzing the fine structure of distributions
por: Thrun, Michael C., et al.
Publicado: (2020) -
Classification methods for the development of genomic signatures from high-dimensional data
por: Moon, Hojin, et al.
Publicado: (2006) -
Machine-learned cluster identification in high-dimensional data
por: Ultsch, Alfred, et al.
Publicado: (2017) -
MultiMAP: dimensionality reduction and integration of multimodal data
por: Jain, Mika Sarkin, et al.
Publicado: (2021)