Cargando…
Caspases from scleractinian coral show unique regulatory features
Coral reefs are experiencing precipitous declines around the globe with coral diseases and temperature-induced bleaching being primary drivers of these declines. Regulation of apoptotic cell death is an important component in the coral stress response. Although cnidaria are known to contain complex...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Society for Biochemistry and Molecular Biology
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7586219/ https://www.ncbi.nlm.nih.gov/pubmed/32788218 http://dx.doi.org/10.1074/jbc.RA120.014345 |
_version_ | 1783599952390258688 |
---|---|
author | Shrestha, Suman Tung, Jessica Grinshpon, Robert D. Swartz, Paul Hamilton, Paul T. Dimos, Bradford Mydlarz, Laura Clark, A. Clay |
author_facet | Shrestha, Suman Tung, Jessica Grinshpon, Robert D. Swartz, Paul Hamilton, Paul T. Dimos, Bradford Mydlarz, Laura Clark, A. Clay |
author_sort | Shrestha, Suman |
collection | PubMed |
description | Coral reefs are experiencing precipitous declines around the globe with coral diseases and temperature-induced bleaching being primary drivers of these declines. Regulation of apoptotic cell death is an important component in the coral stress response. Although cnidaria are known to contain complex apoptotic signaling pathways, similar to those in vertebrates, the mechanisms leading to cell death are largely unexplored. We identified and characterized two caspases each from Orbicella faveolata, a disease-sensitive reef-building coral, and Porites astreoides, a disease-resistant reef-building coral. The caspases are predicted homologs of the human executioner caspases-3 and -7, but OfCasp3a (Orbicella faveolata caspase-3a) and PaCasp7a (Porites astreoides caspase-7a), which we show to be DXXDases, contain an N-terminal caspase activation/recruitment domain (CARD) similar to human initiator/inflammatory caspases. OfCasp3b (Orbicella faveolata caspase-3b) and PaCasp3 (Porites astreoides caspase-3), which we show to be VXXDases, have short pro-domains, like human executioner caspases. Our biochemical analyses suggest a mechanism in coral which differs from that of humans, where the CARD-containing DXXDase is activated on death platforms but the protease does not directly activate the VXXDase. The first X-ray crystal structure of a coral caspase, of PaCasp7a determined at 1.57 Å resolution, reveals a conserved fold and an N-terminal peptide bound near the active site that may serve as a regulatory exosite. The binding pocket has been observed in initiator caspases of other species. These results suggest mechanisms for the evolution of substrate selection while maintaining common activation mechanisms of CARD-mediated dimerization. |
format | Online Article Text |
id | pubmed-7586219 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | American Society for Biochemistry and Molecular Biology |
record_format | MEDLINE/PubMed |
spelling | pubmed-75862192020-10-28 Caspases from scleractinian coral show unique regulatory features Shrestha, Suman Tung, Jessica Grinshpon, Robert D. Swartz, Paul Hamilton, Paul T. Dimos, Bradford Mydlarz, Laura Clark, A. Clay J Biol Chem Enzymology Coral reefs are experiencing precipitous declines around the globe with coral diseases and temperature-induced bleaching being primary drivers of these declines. Regulation of apoptotic cell death is an important component in the coral stress response. Although cnidaria are known to contain complex apoptotic signaling pathways, similar to those in vertebrates, the mechanisms leading to cell death are largely unexplored. We identified and characterized two caspases each from Orbicella faveolata, a disease-sensitive reef-building coral, and Porites astreoides, a disease-resistant reef-building coral. The caspases are predicted homologs of the human executioner caspases-3 and -7, but OfCasp3a (Orbicella faveolata caspase-3a) and PaCasp7a (Porites astreoides caspase-7a), which we show to be DXXDases, contain an N-terminal caspase activation/recruitment domain (CARD) similar to human initiator/inflammatory caspases. OfCasp3b (Orbicella faveolata caspase-3b) and PaCasp3 (Porites astreoides caspase-3), which we show to be VXXDases, have short pro-domains, like human executioner caspases. Our biochemical analyses suggest a mechanism in coral which differs from that of humans, where the CARD-containing DXXDase is activated on death platforms but the protease does not directly activate the VXXDase. The first X-ray crystal structure of a coral caspase, of PaCasp7a determined at 1.57 Å resolution, reveals a conserved fold and an N-terminal peptide bound near the active site that may serve as a regulatory exosite. The binding pocket has been observed in initiator caspases of other species. These results suggest mechanisms for the evolution of substrate selection while maintaining common activation mechanisms of CARD-mediated dimerization. American Society for Biochemistry and Molecular Biology 2020-10-23 2020-08-11 /pmc/articles/PMC7586219/ /pubmed/32788218 http://dx.doi.org/10.1074/jbc.RA120.014345 Text en © 2020 Shrestha et al. Author's Choice—Final version open access under the terms of the Creative Commons CC-BY license (http://creativecommons.org/licenses/by/4.0) . |
spellingShingle | Enzymology Shrestha, Suman Tung, Jessica Grinshpon, Robert D. Swartz, Paul Hamilton, Paul T. Dimos, Bradford Mydlarz, Laura Clark, A. Clay Caspases from scleractinian coral show unique regulatory features |
title | Caspases from scleractinian coral show unique regulatory features |
title_full | Caspases from scleractinian coral show unique regulatory features |
title_fullStr | Caspases from scleractinian coral show unique regulatory features |
title_full_unstemmed | Caspases from scleractinian coral show unique regulatory features |
title_short | Caspases from scleractinian coral show unique regulatory features |
title_sort | caspases from scleractinian coral show unique regulatory features |
topic | Enzymology |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7586219/ https://www.ncbi.nlm.nih.gov/pubmed/32788218 http://dx.doi.org/10.1074/jbc.RA120.014345 |
work_keys_str_mv | AT shresthasuman caspasesfromscleractiniancoralshowuniqueregulatoryfeatures AT tungjessica caspasesfromscleractiniancoralshowuniqueregulatoryfeatures AT grinshponrobertd caspasesfromscleractiniancoralshowuniqueregulatoryfeatures AT swartzpaul caspasesfromscleractiniancoralshowuniqueregulatoryfeatures AT hamiltonpault caspasesfromscleractiniancoralshowuniqueregulatoryfeatures AT dimosbradford caspasesfromscleractiniancoralshowuniqueregulatoryfeatures AT mydlarzlaura caspasesfromscleractiniancoralshowuniqueregulatoryfeatures AT clarkaclay caspasesfromscleractiniancoralshowuniqueregulatoryfeatures |