Cargando…

Histological correlates of hippocampal magnetization transfer images in drug-resistant temporal lobe epilepsy patients

OBJECTIVE: Temporal lobe epilepsy patients (TLE) often present with hippocampal atrophy, increased T2 relaxation, and reduced magnetization transfer ratio (MTR) in magnetic resonance images (MRI). The histological correlates of the reduced hippocampal MTR are so far unknown. Since MTR is dependent o...

Descripción completa

Detalles Bibliográficos
Autores principales: Peixoto-Santos, Jose Eduardo, Velasco, Tonicarlo R., Carlotti, Carlos Gilberto, Assirati, Joao Alberto, Rezende, Gustavo Henrique de Souza e, Kobow, Katja, Coras, Roland, Blümcke, Ingmar, Salmon, Carlos Ernesto Garrido, Santos, Antonio Carlos dos, Leite, Joao Pereira
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7586233/
https://www.ncbi.nlm.nih.gov/pubmed/33395959
http://dx.doi.org/10.1016/j.nicl.2020.102463
Descripción
Sumario:OBJECTIVE: Temporal lobe epilepsy patients (TLE) often present with hippocampal atrophy, increased T2 relaxation, and reduced magnetization transfer ratio (MTR) in magnetic resonance images (MRI). The histological correlates of the reduced hippocampal MTR are so far unknown. Since MTR is dependent on the tissue’s macromolecules, our aim was to evaluate the correlations between cellular populations, extracellular matrix molecules and the MTR in TLE patients. METHODS: Patients with TLE (n = 26) and voluntaries (=20) were scanned in a 3 Tesla MRI scanner, and MTR images were calculated from 3DT1 sequences with magnetization pulse on resonance. Immunohistochemistry for neurons, reactive astrocytes, activated microglia, and extracellular matrix chondroitin sulfate were performed in formalin fixed, paraffin embedded tissues of TLE and autopsy controls (n = 10). Results were considered significant with adjusted p < 0.05. RESULTS: Compared to the respective controls, TLE patients had reduced hippocampal MTR, increased reactive astrocytes and activated microglia, increased extracellular chondroitin sulfate, and reduced neuron density, compares to controls. MTR correlated positively with neuron density in CA3 and with chondroitin sulfate in CA3 and CA1. Multiple linear regressions reinforced the correlations between chondroitin sulfate and MTR. SIGNIFICANCE: Our data indicate that extracellular matrix molecules are the most significant histological correlates of magnetization transfer ratio in the hippocampus of TLE patients.