Cargando…

Extremely Amyloidogenic Single-Chain Analogues of Insulin’s H-Fragment: Structural Adaptability of an Amyloid Stretch

[Image: see text] Relatively short amino acid sequences often play a pivotal role in triggering protein aggregation leading to the formation of amyloid fibrils. In the case of insulin, various regions of A- and B-chains have been implicated as the most relevant to the protein’s amyloidogenicity. Her...

Descripción completa

Detalles Bibliográficos
Autores principales: Dec, Robert, Dzwolak, Wojciech
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Chemical Society 2020
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7586408/
https://www.ncbi.nlm.nih.gov/pubmed/32988199
http://dx.doi.org/10.1021/acs.langmuir.0c01747
Descripción
Sumario:[Image: see text] Relatively short amino acid sequences often play a pivotal role in triggering protein aggregation leading to the formation of amyloid fibrils. In the case of insulin, various regions of A- and B-chains have been implicated as the most relevant to the protein’s amyloidogenicity. Here, we focus on the highly amyloidogenic H-fragment of insulin comprising the disulfide-bonded N-terminal parts of both chains. Analysis of the aggregation behavior of single-chain peptide derivatives of the H-fragment suggests that the A-chain’s part initiates the aggregation process while the disulfide-tethered B-chain reluctantly adapts to amyloid structure. Merging of both A- and B-parts into single-chain continuous peptides (A–B and B–A) results in extreme amyloidogenicity exceeding that of the double-chain H-fragment as reflected by almost instantaneous de novo fibrillization. Amyloid fibrils of A–B and B–A present distinct morphological and infrared traits and do not cross-seed insulin. Our study suggests that the N-terminal part of insulin’s A-chain containing the intact Cys6–Cys11 intrachain disulfide bond may constitute insulin’s major amyloid stretch which, through its bent conformation, enforces a parallel in-register alignment of β-strands. Comparison of the self-association behavior of H, A–B, and B–A peptides suggests that A-chain’s N-terminal amyloid stretch is very versatile and adaptive to various structural contexts.