Cargando…
2-D chemical structure image-based in silico model to predict agonist activity for androgen receptor
BACKGROUND: Abnormal activation of human nuclear hormone receptors disrupts endocrine systems and thereby affects human health. There have been machine learning-based models to predict androgen receptor agonist activity. However, the models were constructed based on limited numerical features such a...
Autores principales: | Yu, Myeong-Sang, Lee, Jingyu, Lee, Yongmin, Na, Dokyun |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7586653/ https://www.ncbi.nlm.nih.gov/pubmed/33106158 http://dx.doi.org/10.1186/s12859-020-03588-1 |
Ejemplares similares
-
In silico prediction of potential chemical reactions mediated by human enzymes
por: Yu, Myeong-Sang, et al.
Publicado: (2018) -
Hits Discovery on the Androgen Receptor: In Silico Approaches to Identify Agonist Compounds
por: Réau, Manon, et al.
Publicado: (2019) -
A machine learning model for classifying G-protein-coupled receptors as agonists or antagonists
por: Oh, Jooseong, et al.
Publicado: (2022) -
In silico discovery of novel Retinoic Acid Receptor agonist structures
por: Schapira, Matthieu, et al.
Publicado: (2001) -
In vitro and in silico characterization of adiponectin-receptor agonist dipeptides
por: Lee, Yuna, et al.
Publicado: (2021)