Cargando…

Study of out‐of‐field dose in photon radiotherapy: A commercial treatment planning system versus measurements and Monte Carlo simulations

PURPOSE: An accurate assessment of out‐of‐field dose is necessary to estimate the risk of second cancer after radiotherapy and the damage to the organs at risk surrounding the planning target volume. Although treatment planning systems (TPSs) calculate dose distributions outside the treatment field,...

Descripción completa

Detalles Bibliográficos
Autores principales: Sánchez‐Nieto, B., Medina‐Ascanio, K. N., Rodríguez‐Mongua, J. L., Doerner, E., Espinoza, I.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7586840/
https://www.ncbi.nlm.nih.gov/pubmed/32583441
http://dx.doi.org/10.1002/mp.14356
_version_ 1783600075126079488
author Sánchez‐Nieto, B.
Medina‐Ascanio, K. N.
Rodríguez‐Mongua, J. L.
Doerner, E.
Espinoza, I.
author_facet Sánchez‐Nieto, B.
Medina‐Ascanio, K. N.
Rodríguez‐Mongua, J. L.
Doerner, E.
Espinoza, I.
author_sort Sánchez‐Nieto, B.
collection PubMed
description PURPOSE: An accurate assessment of out‐of‐field dose is necessary to estimate the risk of second cancer after radiotherapy and the damage to the organs at risk surrounding the planning target volume. Although treatment planning systems (TPSs) calculate dose distributions outside the treatment field, little is known about the accuracy of these calculations. The aim of this work is to thoroughly compare the out‐of‐field dose distributions given by two algorithms implemented in the Monaco TPS, with measurements and full Monte Carlo simulations. METHODS: Out‐of‐field dose distributions predicted by the collapsed cone convolution (CCC) and Monte Carlo (MC(Monaco)) algorithms, built into the commercially available Monaco version 5.11 TPS, are compared with measurements carried out on an Elekta Axesse linear accelerator. For the measurements, ion chambers, thermoluminescent dosimeters, and EBT3 film are used. The BEAMnrc code, built on the EGSnrc system, is used to create a model of the Elekta Axesse with the Agility collimation system, and the space phase file generated is scored by DOSXYZnrc to generate the dose distributions (MC(EGSnrc)). Three different irradiation scenarios are considered: (a) a 10 × 10 cm(2) field, (b) an IMRT prostate plan, and (c) a three‐field lung plan. Monaco's calculations, experimental measurements, and Monte Carlo simulations are carried out in water and/or in an ICRP110 phantom. RESULTS: For the 10 × 10 cm(2) field case, CCC underestimated the dose, compared to ion chamber measurements, by 13% (differences relative to the algorithm) on average between the 5% and the ≈2% isodoses. MC(Monaco) underestimated the dose only from approximately the 2% isodose for this case. Qualitatively similar results were observed for the studied IMRT case when compared to film dosimetry. For the three‐field lung plan, dose underestimations of up to ≈90% for MC(Monaco) and ≈60% for CCC, relative to MC(EGSnrc) simulations, were observed in mean dose to organs located beyond the 2% isodose. CONCLUSIONS: This work shows that Monaco underestimates out‐of‐field doses in almost all the cases considered. Thus, it does not describe dose distribution beyond the border of the field accurately. This is in agreement with previously published works reporting similar results for other TPSs. Analytical models for out‐of‐field dose assessment, MC simulations or experimental measurements may be an adequate alternative for this purpose.
format Online
Article
Text
id pubmed-7586840
institution National Center for Biotechnology Information
language English
publishDate 2020
publisher John Wiley and Sons Inc.
record_format MEDLINE/PubMed
spelling pubmed-75868402020-10-30 Study of out‐of‐field dose in photon radiotherapy: A commercial treatment planning system versus measurements and Monte Carlo simulations Sánchez‐Nieto, B. Medina‐Ascanio, K. N. Rodríguez‐Mongua, J. L. Doerner, E. Espinoza, I. Med Phys COMPUTATIONAL AND EXPERIMENTAL DOSIMETRY PURPOSE: An accurate assessment of out‐of‐field dose is necessary to estimate the risk of second cancer after radiotherapy and the damage to the organs at risk surrounding the planning target volume. Although treatment planning systems (TPSs) calculate dose distributions outside the treatment field, little is known about the accuracy of these calculations. The aim of this work is to thoroughly compare the out‐of‐field dose distributions given by two algorithms implemented in the Monaco TPS, with measurements and full Monte Carlo simulations. METHODS: Out‐of‐field dose distributions predicted by the collapsed cone convolution (CCC) and Monte Carlo (MC(Monaco)) algorithms, built into the commercially available Monaco version 5.11 TPS, are compared with measurements carried out on an Elekta Axesse linear accelerator. For the measurements, ion chambers, thermoluminescent dosimeters, and EBT3 film are used. The BEAMnrc code, built on the EGSnrc system, is used to create a model of the Elekta Axesse with the Agility collimation system, and the space phase file generated is scored by DOSXYZnrc to generate the dose distributions (MC(EGSnrc)). Three different irradiation scenarios are considered: (a) a 10 × 10 cm(2) field, (b) an IMRT prostate plan, and (c) a three‐field lung plan. Monaco's calculations, experimental measurements, and Monte Carlo simulations are carried out in water and/or in an ICRP110 phantom. RESULTS: For the 10 × 10 cm(2) field case, CCC underestimated the dose, compared to ion chamber measurements, by 13% (differences relative to the algorithm) on average between the 5% and the ≈2% isodoses. MC(Monaco) underestimated the dose only from approximately the 2% isodose for this case. Qualitatively similar results were observed for the studied IMRT case when compared to film dosimetry. For the three‐field lung plan, dose underestimations of up to ≈90% for MC(Monaco) and ≈60% for CCC, relative to MC(EGSnrc) simulations, were observed in mean dose to organs located beyond the 2% isodose. CONCLUSIONS: This work shows that Monaco underestimates out‐of‐field doses in almost all the cases considered. Thus, it does not describe dose distribution beyond the border of the field accurately. This is in agreement with previously published works reporting similar results for other TPSs. Analytical models for out‐of‐field dose assessment, MC simulations or experimental measurements may be an adequate alternative for this purpose. John Wiley and Sons Inc. 2020-07-16 2020-09 /pmc/articles/PMC7586840/ /pubmed/32583441 http://dx.doi.org/10.1002/mp.14356 Text en © 2020 The Authors. Medical Physics published by Wiley Periodicals LLC on behalf of American Association of Physicists in Medicine This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
spellingShingle COMPUTATIONAL AND EXPERIMENTAL DOSIMETRY
Sánchez‐Nieto, B.
Medina‐Ascanio, K. N.
Rodríguez‐Mongua, J. L.
Doerner, E.
Espinoza, I.
Study of out‐of‐field dose in photon radiotherapy: A commercial treatment planning system versus measurements and Monte Carlo simulations
title Study of out‐of‐field dose in photon radiotherapy: A commercial treatment planning system versus measurements and Monte Carlo simulations
title_full Study of out‐of‐field dose in photon radiotherapy: A commercial treatment planning system versus measurements and Monte Carlo simulations
title_fullStr Study of out‐of‐field dose in photon radiotherapy: A commercial treatment planning system versus measurements and Monte Carlo simulations
title_full_unstemmed Study of out‐of‐field dose in photon radiotherapy: A commercial treatment planning system versus measurements and Monte Carlo simulations
title_short Study of out‐of‐field dose in photon radiotherapy: A commercial treatment planning system versus measurements and Monte Carlo simulations
title_sort study of out‐of‐field dose in photon radiotherapy: a commercial treatment planning system versus measurements and monte carlo simulations
topic COMPUTATIONAL AND EXPERIMENTAL DOSIMETRY
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7586840/
https://www.ncbi.nlm.nih.gov/pubmed/32583441
http://dx.doi.org/10.1002/mp.14356
work_keys_str_mv AT sancheznietob studyofoutoffielddoseinphotonradiotherapyacommercialtreatmentplanningsystemversusmeasurementsandmontecarlosimulations
AT medinaascaniokn studyofoutoffielddoseinphotonradiotherapyacommercialtreatmentplanningsystemversusmeasurementsandmontecarlosimulations
AT rodriguezmonguajl studyofoutoffielddoseinphotonradiotherapyacommercialtreatmentplanningsystemversusmeasurementsandmontecarlosimulations
AT doernere studyofoutoffielddoseinphotonradiotherapyacommercialtreatmentplanningsystemversusmeasurementsandmontecarlosimulations
AT espinozai studyofoutoffielddoseinphotonradiotherapyacommercialtreatmentplanningsystemversusmeasurementsandmontecarlosimulations