Cargando…
Handling missing predictor values when validating and applying a prediction model to new patients
Missing data present challenges for development and real‐world application of clinical prediction models. While these challenges have received considerable attention in the development setting, there is only sparse research on the handling of missing data in applied settings. The main unique feature...
Autores principales: | Hoogland, Jeroen, van Barreveld, Marit, Debray, Thomas P. A., Reitsma, Johannes B., Verstraelen, Tom E., Dijkgraaf, Marcel G. W., Zwinderman, Aeilko H. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley & Sons, Inc.
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7586995/ https://www.ncbi.nlm.nih.gov/pubmed/32687233 http://dx.doi.org/10.1002/sim.8682 |
Ejemplares similares
-
Real-time imputation of missing predictor values in clinical practice
por: Nijman, Steven W J, et al.
Publicado: (2020) -
Methods to handle missing values and missing individuals
por: Bonander, Carl, et al.
Publicado: (2018) -
Real-time handling of missing predictors
por: Boersma, Eric, et al.
Publicado: (2021) -
Dutch Outcome in Implantable Cardioverter‐Defibrillator Therapy: Implantable Cardioverter‐Defibrillator–Related Complications in a Contemporary Primary Prevention Cohort
por: van Barreveld, Marit, et al.
Publicado: (2021) -
Statistics applied to clinical trials
por: Cleophas, Ton, et al.
Publicado: (2009)