Cargando…
Automated supervised learning pipeline for non-targeted GC-MS data analysis
Non-targeted analysis is nowadays applied in many different domains of analytical chemistry such as metabolomics, environmental and food analysis. Conventional processing strategies for GC-MS data include baseline correction, feature detection, and retention time alignment before multivariate modeli...
Autores principales: | Sirén, Kimmo, Fischer, Ulrich, Vestner, Jochen |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7587030/ https://www.ncbi.nlm.nih.gov/pubmed/33117972 http://dx.doi.org/10.1016/j.acax.2019.100005 |
Ejemplares similares
-
Semi-automated non-target processing in GC × GC–MS metabolomics analysis: applicability for biomedical studies
por: Koek, Maud M., et al.
Publicado: (2010) -
An automated pipeline for supervised classification of petal color from citizen science photographs
por: Perez‐Udell, Rachel A., et al.
Publicado: (2023) -
Selective and comprehensive analysis of organohalogen compounds by GC × GC–HRTofMS and MS/MS
por: Hashimoto, Shunji, et al.
Publicado: (2015) -
SIMAT: GC-SIM-MS data analysis tool
por: Nezami Ranjbar, Mohammad R., et al.
Publicado: (2015) -
An automated GC/MS system for the analysis of volatile and semi-volatile organic compounds in water
por: Vickers, Allen K., et al.
Publicado: (1993)