Cargando…
Small-Molecule Control of Super-Mendelian Inheritance in Gene Drives
Synthetic CRISPR-based gene-drive systems have tremendous potential in public health and agriculture, such as for fighting vector-borne diseases or suppressing crop pest populations. These elements can rapidly spread in a population by breaching the inheritance limit of 50% dictated by Mendel’s law...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7587219/ https://www.ncbi.nlm.nih.gov/pubmed/32610142 http://dx.doi.org/10.1016/j.celrep.2020.107841 |
Sumario: | Synthetic CRISPR-based gene-drive systems have tremendous potential in public health and agriculture, such as for fighting vector-borne diseases or suppressing crop pest populations. These elements can rapidly spread in a population by breaching the inheritance limit of 50% dictated by Mendel’s law of gene segregation, making them a promising tool for population engineering. However, current technologies lack control over their propagation capacity, and there are important concerns about potential unchecked spreading. Here, we describe a gene-drive system in Drosophila that generates an analog inheritance output that can be tightly and conditionally controlled to between 50% and 100%. This technology uses a modified SpCas9 that responds to a synthetic, orally available small molecule, fine-tuning the inheritance probability. This system opens a new avenue to feasibility studies for spatial and temporal control of gene drives using small molecules. |
---|