Cargando…

Cannabinoid Combination Induces Cytoplasmic Vacuolation in MCF-7 Breast Cancer Cells

This study evaluated the synergistic anti-cancer potential of cannabinoid combinations across the MDA-MB-231 and MCF-7 human breast cancer cell lines. Cannabinoids were combined and their synergistic interactions were evaluated using median effect analysis. The most promising cannabinoid combination...

Descripción completa

Detalles Bibliográficos
Autores principales: Schoeman, Recardia, Beukes, Natasha, Frost, Carminita
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7587381/
https://www.ncbi.nlm.nih.gov/pubmed/33066359
http://dx.doi.org/10.3390/molecules25204682
Descripción
Sumario:This study evaluated the synergistic anti-cancer potential of cannabinoid combinations across the MDA-MB-231 and MCF-7 human breast cancer cell lines. Cannabinoids were combined and their synergistic interactions were evaluated using median effect analysis. The most promising cannabinoid combination (C6) consisted of tetrahydrocannabinol, cannabigerol (CBG), cannabinol (CBN), and cannabidiol (CBD), and displayed favorable dose reduction indices and limited cytotoxicity against the non-cancerous breast cell line, MCF-10A. C6 exerted its effects in the MCF-7 cell line by inducing cell cycle arrest in the G(2) phase, followed by the induction of apoptosis. Morphological observations indicated the induction of cytoplasmic vacuolation, with further investigation suggesting that the vacuole membrane was derived from the endoplasmic reticulum. In addition, lipid accumulation, increased lysosome size, and significant increases in the endoplasmic reticulum chaperone protein glucose-regulated protein 78 (GRP78) expression were also observed. The selectivity and ability of cannabinoids to halt cancer cell proliferation via pathways resembling apoptosis, autophagy, and paraptosis shows promise for cannabinoid use in standardized breast cancer treatment.